

Removing of cadmium ions from wet-process phosphoric acid using precipitation methods.

K. Borowik, P.Rusek, A.Bińczak, U.Ryszko Łukasiewicz Research Network -New Chemical Syntheses Institute, Puławy, 24-110 Poland, Presenting author email: krzysztof.borowik@ins.lukasiewicz.gov.pl

Wet phosphoric acid- crucial component for mineral fertilizers production

Phosphorus (P) takes its rightful place alongside Nitrogen and Potassium among the three primary macronutrients essential to successful plant growth.

Without phosphorus, photosynthesis could not occur. Phosphorus plays a key role in complex energy transformations that are necessary to all life, as a main ingredient in ATP (adenosine triphosphate). It is also a central component of DNA and RNA – and is necessary for building proteins and other compounds.

That is just the beginning. Phosphorus is required by the plant from the seedling stage through to maturity – and has a measurable impact on crop quality and yield.

Typical composition of phosphate rock

P_2O_5	29-38%	U	100-200 ppm
Fe_2O_3	0.2-1%	Cd	<1-150 ppm
AI_2O_3	0.1-1%	REE	0.1-1%
CaO	48-52%	K	0.1-0.4
MgO	0.2-0.8%	F	3.3-4.3%
SiO ₂	0.2-5%	Organic carbon	0-0.4 %

Global phosphate rock production in 2021 stood at 204 million tonnes (63 Mt P_2O_5) of marketable concentrate.

Phosphate rock resources technically recoverable reserves should last for more than **300** years.

4

(C.I

Phosphogypsum slag heap at Police

100 milion tonnes deposited, 2 milion tonnes/annually

Phosphogypsum slag heap at Wiślinka

25 milion tonnes deposited

9

Metal sulfides solubility

Elevated pressure pH 0.9-1.5

https://upload.wikimedia.org/wikipedia/ commons/0/0e/Cadmium sulfide.jpg

$Cd^{2+} + H_2S \rightleftharpoons CdS \downarrow + 2H^+$ 20 to 70 °C.

- CdS precipitates partly from phosphoric acid at low pH. A higher degree of cadmium precipitation can be obtained after partial neutralization of the acid. Another way to increase the degree of precipitation of cadmium in the form of CdS is the reaction with hydrogen sulfide under elevaterd pressure e.g. (>5 bar, temp. 20 °C.). The efficiency of CdS precipitation decreases with increasing concentration of phosphoric acid from 10% to 30% P₂O₅ and with increasing temperature from

Other reagents which may be used for Cd precipitation:

- Sodium thiocarbonate, Na₂CS₃
- Sodium diethylodithiophosphate (CH₃CH₂O)₂PS₂Na
- trimercaptotriazin, trisodium salt, C₃N₃S₃Na₃
- Sodium cellulose xanthate
- Sodium N,N-diphenyldithiocarbamate
- Sodium N-ethylophenylodithiokarbamate

Reagents tested as Cd precipitation agents:

> DTPN - bis(2-methylpropyl)-phosphinodithioic acid sodium salt $(C_8H_{18}NaPS_2)$

\succ Cupral - Sodium diethyldithiocarbamate (C₂H₅)₂NCSSNa · 3H₂O

Reactions Cd with DTPN

Phosphinodithioic acid, bis(2-methylpropyl)-, sodium salt ($C_8H_{18}NaPS_2$) iChemical Technologies Inc. Shanghai Facility (China).

Wet Phosphoric Acid - Cd removal

Raw phosphoric acid, 50% P₂O₅

Cd determination: GF-AAS

Precipitation

Filtration

Filtration cake

Low Cd(II) WPA, 50% P₂O₅

Purified WPA paremeters Police Chemical Plant

Parametr	Value	Unit
density	1.578	g/cm ³
P ₂ O ₅	49.58	% (w/w)
Fe	0.36	%(w/w)
ΑΙ	0.39	%(w/w)
Μα	0.15	%(W/W)
Cd	18 77	ma/dm ³
	1 70	ma/dm ³
Cu		l iiig/uiiič

15

WPA preparation for the tests: reduction with metallic iron powder: - iron dose 40g/L WPA

- ambient temperatrure ca.+25 °C
- contact time: 30min
- intensive stirring (600rpm)
- $Cu^{2+} + Fe^0 \rightarrow Cu^0 + Fe^{2+}$
- $Fe^0 + 2Fe^{3+} \rightarrow 3Fe^{2+}$

Cu(II) decerease from 1.28 to 0.11 mg/l total Fe incerease from 0.36 to 0.56 %

Test procedure

Parameter	Quantity/Value	Unit
WPA	25	mL
DTPN concentration	1	g/100mL
DTPN volume added	0, 25, 50, 100, 250, 500	μL
Shaking time (2min ⁻¹)	1	h
Temperature	20, 40, 60, 80	°C

Phase seperation- vacume filtration on 0,45µm nitrocelulose filter ≻2 g phosphogypsum as filtration aid ➢ Dissolution up to 50 ml

Analytical procedure

Cd determination in liquid phase: GF-AAS AA240Z/GTA120 VARIAN

Parameter	Cd	
Backgrund	Zeeman	
correction		
Calibration mode	peak height	
Wavelength [nm]	228.8	
HKL current [mA]	4,0	
Matrix modifier	$1\% \text{ NH}_4\text{H}_2\text{PO}_4$	
Calibration curve	0.5; 1.0; 1.5 µg/l	

LOD > 0.05 mg Cd/L

Influence of temperature and DTPN on Cd removal efficiency from WPA

19

Influence of reaction time on Cd removal efficiency from WPA

20

Experiment conditions: > WPA volume: 25 mL > DTPN: 0.20 g/L WPA > Temperature: ambient > Phase contact time: 1h **Filtration with 1g of** phosphogypsum as filtration aid > Flushing with water, volume up to 50 mL

Cupral - Sodium diethyldithiocarbamate trihydrate $(C_2H_5)_2NCSSNa \cdot 3H_2O$

Cd removal using Cupral

30 40 50 WPA conc. [% P₂O₅]

21

Experiment conditions:

- > WPA no prior preparation,
- > WPA volumume: 25 mL
- > Cupral: 0.500 g (L:S=50)
- > Temperaure: ambient
- > Phase contact time: 2h
- Filtration with phosphogypsum as filtration aid

Conclusions

Optimal parameters of cadmium removal:

- **DTPN** is effective in Cd removal at concentrated acid solution;
- phosphoric acid reduction with metallic iron at ambient temperature;
- cadmium precipitation at ambient temperature;
- contact time: less than 60 min;
- filtration with phosphogypsum as filtration aid;
- minimal DTPN consumption 0.1 kg/1m³ WPA;
- cadmium removal efficency >99.5% (to less than 1 mg/L)
- High cost of the DTPN reagent

Historical price trends \$/tonne

23

Thank you for your attention

