

Development of a citrus processing waste-based biorefinery for production of high-added value commodities

P. Karanicola^{1,2}, M. Patsalou¹, P. Christou², G. Panagiotou², M. Koutinas¹

¹Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus

²KEAN Soft Drinks, Ltd, Promachon Eleftherias, 4103, Agios Athanasios, Limassol, Cyprus

- Worldwide citrus fruits production: 143 x 10⁶ t per year
- Industrial generation of citrus peel waste (CPW): 24 x 10⁶ t per year
- 50 % of the total mass is considered as CPW
 - Peel
 - Membranes
 - Seeds
 - Pulp
- 1 17 m³ citrus processing wastewater (CPWW) per t processed fruit
 - Factory cleaning
 - Juice concentration
 - Essential oils extraction

■ Up to 17 m³ citrus processing wastewater (CPWW) per t processed fruit

- Factory cleaning
- Juice concentration
- Essential oils extraction

Previous CPWW Exploitation Studies

- Preservative
- Flavoring
- Anti-microbial properties

- Foods
- Medicine
- Green solvent
- Platform chemical

Antimicrobial agents

Antioxidant Characteristics:

- Anticancer
- Antiviral
- Anti-inflammatory properties

- Antioxidants
- Pro-vitamin A activity (β-carotene)

- Foods
- Medicine

Foods

Medicine

Cosmetics

Cosmetics

- High crystallinity
- Biodegradability
- High degree of polymerization
- High water-holding capacity
- Enhanced Mechanical strength
- High Purity

- Food Industry
- Electronics Industry
- Biomedical Industry

300 Bac

Bacterial Cellulose

Aim and Objectives

Biorefinery development for manufacture of valueadded extractable products and bacterial cellulose using citrus processing wastewater

Recovery of essential oils

Assessment of different organic solvents for carotenoids extraction

Assessment of different adsorption materials for polyphenols recovery

Production of bacterial cellulose

CPWW Composition

Ī

Three streams:

- Heating/Cooling
- Juice vacuum concentration
- $ule{content}$ COD content $\leq 0.6 \text{ g L}^{-1}$

Sugars and bioactive compounds were not detected

	T (* 1	\sim	• 1	T	•
	Essential	()	110	Hytract	1011
_	Loouthan	$\mathbf{\mathbf{\mathcal{O}}}$	1112	Lauaci	1011

rent Study
104.6
48.0
95.0
0.8
450.1
5.5
3.9

Wastewater Solid

CPWW

Proposed Biorefinery Process

Essential Oils Extraction

Experimental Conditions:

- 3500 rpm
- 25 °C
- 30 min
- 5:1 CPWW-to-solvent

Carotenoids Extraction

Experimental Conditions:

- 100 rpm
- 35 °C
- 35 min
- 2% solid loading

Feedstock	Extraction method	Solvent	Production	Ref.	
Orange peel	Ultrasound-assisted extraction	50%, v/v Ethanol	0.63 mg β-carotene/100 g dry basis	Montero-Calderon et al., 2019	
Kinnow mandarin peel	Ultrasound-assisted extraction	Ethanol	2.97 mg lutein/100 g dry basis	Saini et al., 2020	
Mandarin peel	Solid-liquid extraction	Ethanol/Acetone/Hexane (25/25/50 v/v)	27 mg/100 mg dry basis	Barman et al., 2020	
Mandarin peel	Supercritical fluid extraction	CO ₂ -acetone (7%)	0.39 mg β-carotene/100 g dry basis	Tsitsagi et al., 2018	
Mandarin peel	High Voltage electric discharges	N/A	0.369 mg β-carotene/100 ml of extract	Buniowska et al., 2015	
Orange Peel	Ultrasound-assisted extraction	Limonene	11.25 mg β-carotene/100 g dry basis	Boukroufa et al., 2017	
CDWW solid	Calmant anton ation	Ethanol	191 mg β-carotene/100 g dry basis	Current study	
CPWW solid	Solvent extraction	Ethanol/Acetic acid/Limonene (25/25/50 v/v)	197 mg β-carotene/100 g dry basis		

Polyphenols Recovery

✓ Assessment of different adsorption materials and different concentrations

	→
CPWW	Filtration
Water Ethanol	Liquid Adsorption
1	Polyphenols Sugars
	,

Adsorption material	Polarity	Particle size diameter [mm]	Surface area [m ² g ⁻¹]	Pore size [nm]
Amberlite XAD4	non-polar	0.56 - 0.71	750	10
Amberlite XAD16N	non-polar	0.56 - 0.71	800	20
Amberlite XAD7HP	moderate polar	0.56 - 0.71	380	30-40
PuroSorb PAD900	non-polar	0.35 - 1.20	850	15-30
Biochar*	non-polar	n.d.	n.d.	n.d.
Activated Biochar**	non-polar	n.d.	n.d.	n.d.

^{*}Pistachio shells pyrolyzed at 500 °C for 3 min (Kyriakou et al., 2020)

^{**}Pistachio Biochar Activation performed using 1 M KOH for 24 h at 25 °C

Batch Experiments, 25 °C, 100 rpm, 1 h, conical flasks 50 ml CPWW

---XAD7HP ---XAD16N ---XAD4 ---PAD900 ---Biochar ---Activated Biochar

(a) Polyphenols (b) Sugars

Desorption Experiments: 10 g of each adsorption material in columns

1 resin volume [rv] = 10 ml

Desorption Experiments: 10 g of each adsorption material in columns

Chosen resin: Pursorb PAD900

1 resin volume [rv] = 10 ml

Desorption Experiments: 10 g of each adsorption material in columns

Desorption Experiments: 10 g of each adsorption material in columns

Bacterial Cellulose Production

Experimental Conditions:

- *K. sucrofermentans* DSM 15973
- T = 30 °C, 150 rpm (for 2 d then static)
- 15 d fermentation duration
- Initial sugars conc.: 22.5 g L⁻¹
- ✓ Final BC conc.: 3.9 g L⁻¹
- ✓ Yield: 0.19 g_{BC} g_{sugar}-1
- ✓ Productivity: 0.39 g L⁻¹ d⁻¹

Industrial Waste	Additional Nutrient	Culture	BC Conc. [g L ⁻¹]	BC Yield [g _{BC} g ⁻¹]	Ref.
Citrus peel fluid	Acetate buffer	G. xylinus	2.3	0.12	Kuo et al., 2019
Sugar beet molasses	Null	C 1: PTCC 1724	4.6	0.25	Salari et al., 2019
Cheese whey	Null	G. xylinus PTCC 1734	3.6	0.14	
Sweet lime pulp	Null	K. europaeus SGP37	6.3	0.19	Dubey et al., 2018
Sugarcane molasse	Null	K. rhaeticus	1.9	0.04	Machado et al., 2018
Ripe dates	Yeast extract, peptone, Na ₂ HPO ₄ , citric acid	A. xylinum 0416	5.8	0.19	Lotfiman et al., 2018
Pecan nutshell	Yeast extract, peptone, ethanol	G. entanii	2.8	0.07	Dorame-Miranda et al., 2019
CPWW	Yeast extract, peptone, Na ₂ HPO ₄ , citric acid	K. sucrofermentans DSM 15973	3.9	0.19	Current Study

Conclusions

- ✓ First study in our knowledge used CPWW for polyphenols recovery through adsorption yielding up to 65%.
- ✓ 0.45 kg m⁻³ of essential oils can be recovered from CPWW using *n*-heptane.
- ✓ 1.91 mg g_{db}^{-1} of carotenoids can be recovered employing ethanol.
- ✓ Production of **3.9 g L**⁻¹ of **bacterial cellulose** employing *K. sucrofermentans* DSM 15793.

Future Work

ENTERPRISES/0521/0185

Thank you for your attention!