

10th International Conference on Sustainable Solid Waste Management Chania, Greece, 21 - 24 JUNE 2023

Carotenoid extraction from microalgae cultivated in food industry effluents for the production of cosmeceuticals

I. Papachristou¹, C. Anagnostopoulou^{1,2}, K.N. Kontogiannopoulos¹, P.G. Kougias¹

¹ Soil and Water Resources Institute, Hellenic Agricultural Organization Dimitra, Thermi 57001, Greece

² Department of Food Science & Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, Greece

- 1. Introduction
- 2. Materials and methods
- 3. Results
- 4. Conclusion

Water and circular economy

- Water is an indispensable resource for any ecosystem.
- Access to clean water is a recognized human right by United Nations
- Up to 30% increase in global water demand by 2050 (Boretti et al, 2019)
- 57% of total water withdrawal in Europe was by Industrial sector (Aquastat)

Microalgae cultivation

✓ Fast growth rates

 ✓ Highly resilient and adaptable

✓ Versatile product output

Carotenoids

- What are they?
- Lipophilic compounds
- Anti-inflammatory and antioxidant activity

Applications

- Natural food colorants
- Dietary supplements
- Cosmeceuticals

Extraction

- Organic solvents are typically required (acetone, ethanol, hexane etc)
- Inert conditions

Aim and objectives

Materials and methods

- Cultivation medium was a **mixture** of expired orange juice, brewery wastewater and cheese-whey
- Model microalga was *Chlorella vulgaris*
- Pigment extraction took place overnight in inert conditions from lyophilized biomass with chloroform:methanol (2:1, vol/vol)
- Pigment concentration was determined spectrophotometrically according to equations from Dharma et al

 $Chlorophyll \ a(Cha) = 16.72(A665.2) - 9.16(A652.4)$ Chlorophyll b(Chb) = 34.09(A652.4) - 15.28(A665.2) Total carotenoid content = [1000(A470) - 1.63Cha - 104.96Chb]/221

Results

7/5/23 | Slide 8

Cultivation in wastewater

•	A te	otal of		
•	A to	otal of		
			- 36 te	ests
Run	X. (%)	X-(%)	X-(%)	X. (50
1	50.00	0.00	0.00	50.00
2	1.03	18.74	52.00	28.22
3	25.00	25.00	25.00	25.00
4	23.51	70.80	0.00	5.68
5	35.32	0.00	28.51	38.17
6	2.74	47.38	49.89	0.00
7	31.51	32.38	0.00	38.12
8	25.00	25.00	25.00	25.00
9	0.00	28.19	/1.81	0.00
10	20.00	23.03	40.10	3.04
-	22.14	0.00	71.00	0.00
12	0.00	69.00	27.15	12.02
14	17.97	4.00	64.00	12.24
15	0.00	0.00	100.00	0.00
16	77.80	0.00	0.00	22.20
17	66.07	33.93	0.00	0.00
18	17.48	13.29	19.24	50.00
19	0.00	78.87	0.00	23.13
20	35.32	0.00	28.51	38.17
21	0.00	1.71	72.33	25.97
22	62.59	22.52	1.74	13.15
Z3	8.02	66.67	25.31	0.00
24	20.85	Z3.53	45.78	9.84
2	3.48	40.41	0.11	50.00
20	10.00	20.41	2/28	28.12
20	500.00	0.00	0.00	30.12
20	67.90	0.00	27.00	5.20
20	25.00	25.00	25.00	25.00
31	4.54	2.84	42.62	50.00
32	0.00	100.00	0.00	0.00
33	62.59	22.52	1.74	13.15
34	43.57	51.95	4.48	0.00
	43.30	29.41	27.29	0.00
Б				

Cultivation medium

Wastewater type	Composition (%)
Expired orange juice	43.5
Brewery wastewater	31.0
Cheese whey	0.5
Water	25.0

Pigment extraction

- Spectrophotometric results from lyophilized biomass
- Pigment content was steadily increasing
- ✓ At the end of cultivation, pigment content was 270 µg/g_{DW}
- ✓ Preliminary results on wet biomass with ethanol:hexane indicate a ~65% extraction efficiency.

HPLC profile

7/5/23 | Slide 11

Conclusions

- C.vulgaris was cultivated in a mixture of expired orange juice, brewery wastewater and cheese-whey
- Phycoremediation of food industry effluents was proven feasible with microalgae
- Pigment content was 270 μ g/g_{DW} after 14 days of cultivation
- Preliminary HPLC results indicate the presence of chlorophyll a, chlorophyll b, lutein and β-carotene.

Future steps

• Optimization of carotenoid extraction (pretreatment method, solvents etc)

• Determination of the biological activity (total phenolic content, antioxidant activity etc)

Skin cream production

This activity was supported by the project BlueBioChain, Project ID 31, which is co-funded by European Union's Horizon 2020 Grant agreement No. 817992 and national funds General Secretariat for Research and Innovation GSRI, Greece, MIS 5168515/ T12EPA5-00077 under the ERA-Net BlueBio Co-fund.

Thank you for your attention!

10th International Conference on Sustainable Solid Waste Management Chania, Greece, 21 - 24 JUNE 2023

Carotenoid extraction from microalgae cultivated in food industry effluents for the production of cosmeceuticals

I. Papachristou¹, C. Anagnostopoulou^{1,2}, K.N. Kontogiannopoulos¹, P.G. Kougias¹

¹ Soil and Water Resources, Institute, Hellenic Agricultural Organization Dimitra, Thermi 57001, Greece

²Department of Food Science & Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, Greece

