

## INVESTIGATING THE ROLE OF BIOREFINERIES WITHIN THE CONCEPT OF CIRCULAR ECONOMY

Dr Evanthia Nanaki Innovation and New Technologies Analyst

10<sup>th</sup> International Conference on Sustainable Solid Waste Management, June 21<sup>st</sup> 2023



21-24 June 2023, Chania, Crete

### HELLENIQ SOUTHEAST EUROPE'S LEADING DOWNSTREAM GROUP WITH PRESENCE ALONG THE ENERGY VALUE CHAIN



## Refining, Supply & Trading

17Mtpa / 344kbpd Refining capacity

**c. 7m M<sup>3</sup>** Crude and product tank capacity

**60%** domestic market share

> **55%** Exports

# Petrochemicals

**235kt** Capacity (PP)

**26kt** Capacity (BOPP)

80% vertical integration Supply of propylene >65% Exports



#### Domestic

1,682 petrol stations under EKO an bra

> **30%** market share

#### International

**314** Petrol stations 5 countries



#### **ELPE Renewables**

**c. 350 MW** in operation

>2GW projects in various stages of development



Power (Elpedison JV) 840MW CCGT capacity

**6%** retail market share

Gas DEPA (35%)

Infrastructure: In sale process

International: Exit considered

Commercial: - 2.1 bcm w/s - Retail



**6** Offshore early exploration blocks

Partnership with credible IOCs



#### Electric mobility

- Fleet electrification is proposed as a strategy for reducing air pollutant emissions and improving air quality in urban areas
- New storage technologies and electric vehicles are leading towards a new system in which consumers can produce, use and sell their electricity
- Electricity produced from RES

#### Renewable fuels

- Advanced biofuels can serve all different transport modes (road, rail, marine and air)
- Waste, non-food biomass as a feedstock
- Hydrotreated Vegetable Oil attracts investments (e.g. Neste, ENI, Total, UPM, Preem)

#### Green Hydrogen

- Integrating renewable electricity with electrolysers and desalination plants
- Fuel cell vehicles

Aligned with EU strategies such as European Green Deal, REPOWER etc





## **HELLENIQ** Strategic Research and Innovation at HELLENIQ ENERGY

- **Started** as participants in proposed research projects related to energy issues.
- **Continue** in targeted participation in projects relevant to the Group's activities, enhancing collaborations with the academic community in Greece and abroad.
- **Evolve** into a team that defines and proposes research projects according to the strategic visions of HELLENiQ Energy.

#### ✓ Areas of Interest

- Reduction of CO2 emissions
- Digitalization in refining
- Low GHG fuels
- Energy storage
- Renewable energy sources
- E-Mobility







Utilization of plastic and rubber waste for the production of alternative liquid fuels and adsorbent materials with innovative processes within the framework of the circular economy and industrial symbiosis model - ACTOIL

ESPA 2014-2020 abt 450.000 eur

#### GOALS

Pyrolysis of PP waste from HELLENiQ Energy – which can be use as feedstock for a pyrolysis plant.

Pyrolysis of synthetic rubber

Investigation of the conceptual plastic waste pyrolysis in a circular economy and industrial symbiosis model. focused on the development of a PP waste pyrolysis plant in Greece, within the context of circular economy and industrial symbiosis.

#### Partners

- CaO Hellas Natural Chemicals
- HelleniQ Energy
- Center for Research
  - & Technology
- Aristotle University of

Thessaloniki











- <u>Pyrolysis oil</u>: can be sold, providing a source of revenue for the pyrolysis plant. It can be used to generate heat and electricity, or it can be upgraded to produce fuels.
- Two additional products can be used efficiently within the concept of industrial symbiosis :
  - <u>The gaseous product</u> can be utilized to cover the energy demands of the pyrolysis plant. It can also be used by neighboring industrial plants as a source of thermal energy, thus reducing their operating costs and dependence on fossil fuels, such as natural gas.



ighboring plants and used feedstock in a plant that



Several industrial plants that produce plastic waste can offer their waste as feedstock to a pyrolysis plant, ensuring an efficient and environmentally safe utilization route for their waste.

#### Reference:

A. Zabaniotou & I.Vaskalis (2023), Economic Assessment of Polypropylene Waste (PP) Pyrolysis in Circular Economy and Industrial Symbiosis Energies, MDPI 16(2), 593



| •                           |         |             |            |          |          |           | Shredded  |
|-----------------------------|---------|-------------|------------|----------|----------|-----------|-----------|
| Analysis                    | Unit    | Method      | HDPE_waste | HDPE_ind | pp waste | PP- Repr. | blocks PP |
|                             |         | ASTM D 974  |            |          |          |           |           |
| Total Acid Number (TAN)     | mgKOH/g |             | 0,01       | 0,3      | 0,09     | 0,09      | 0         |
| Water Content (WC)          | wt%     | ASTM D 1744 | 0,0048     | 0,0081   | 0,0079   | 0,0026    | 0,0031    |
| Carbon Residue (MCRT)       | %m/m    | ASTM D 4530 | 0          | 0        | 0        | 0         |           |
| Kinematic Viscosity @ 40 °C | cSt     | ASTM D 445  | 2,587      | 3,169    | 1,555    | 1,227     | 1,429     |
| Density @ 60 °C             | g/ml    | ASTM D 4052 | 0,7671     | 0,7668   | 0,7514   | 0,7413    |           |
| Density @ 15 °C             | g/ml    | ASTM D 4052 | 0,8001     | 0,7998   | 0,7858   | 0,7783    | 0,7756    |
| ISO17025 Nitrogen           | ppm wt  | UOP 269-701 | 43,5       | 107,9    | 77,4     | 49,2      | 3,7       |
| Calorific value             | MJ/kg   | ASTM D 4809 | 45,6946    | 46,2156  | 46,1178  | 45,9728   |           |
| C (LECO 628)                | wt%     | ASTM D 5291 | 84,99      | 85,33    | 84,35    | 86,08     | 86,52     |
| Н                           | wt%     | ASTM D 5291 | 14,03      | 14,21    | 14,1     | 14,15     | 14,44     |
| Sulfur                      | mg/kg   | ASTM D 5453 | 2,1        | 9,9      | 6        | 1,1       | 0,5       |
| Flash Point                 | °C      | ASTM D 93   | <40        | <40      | 17       | <50       | <22.5     |
| Pour Point                  | °C      | ASTM D 97   | 33         | 39       | <-42     | <-39      | <-41      |
| SIMDIS High temp            |         | ASTM D 6352 |            |          |          |           |           |
| Gasoline                    | °C      |             | 24,8       | 24,2     | 40,7     | 46,3      | 46,7      |
| Gasoline cut point          | °C      |             | 216        | 216      | 216      | 216       | 216       |
| Diesel                      | °C      |             | 36,3       | 30,2     | 37       | 34,6      | 35,1      |
| Diesel cut point            | °C      |             | 343        | 343      | 343      | 343       | 343       |
| Residue                     | °C      |             | 38,9       | 45,6     | 22,3     | 19,1      | 18,2      |
| mass%_98                    | °C      |             | 507,8      | 550      | 511,8    | 486,4     | 479,6     |
| mass%_99                    | °C      |             | 541        | 587,8    | 561,6    | 517,4     | 508,4     |
| mass%_FBP                   | °C      |             | 592,6      | 638,4    | 619,2    | 552,6     | 536,6     |

Sampling & Analysis: M.Bampaou & K.Panopoulos at Chemical Process and Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), 6th km. Charilaou-Thermi Road, 57001, Thessaloniki, Greece

| Sample        | Source                                                       |  |  |
|---------------|--------------------------------------------------------------|--|--|
| HDPE_waste    | Milk , Shampoo & Bleach packages                             |  |  |
| HDPE_ind.     | After industrial process of bottle tops of bleach<br>bottles |  |  |
| PP waste      | Yogurt and food packages                                     |  |  |
| polypropylene | Reprocessed material - HELLENiQ                              |  |  |
| polypropylene | Shredded blocks - HELLENiQ                                   |  |  |

In Greece, approximately **700 thousand t of plastic waste (**68 kg per capita), is generated annually.

**Improper management**: low collection rates; highly mixed waste streams & limited recycling infrastructure.

The accumulation of plastic waste poses an important issue for the country, as **more than 40 thousand t of plastic leaks** into nature and local ecosystems each year.

Negative implications on the national economy, with annual losses amassing to 26 M€, affecting the tourism, shipping, and fishing sectors.



The potential of utilizing waste and feeding it into a forward supply chain, within the model of circular economy, is of great significance for the energy transition to a low carbon economy.

A circular economy model focuses on waste management and resource recovery, through reuse, recycling, and energy utilization.

Emission reduction and promotion of the efficient use of resources



## Can you help us to transform the energy future?