CHANIA2023 21-24 JUNE

chania2023.uest.gr

National Technical University of Athens

ΔΗΜΟΣ ΧΑΝΙΩΝ EMUNICIPALITY OF ANIA · CRETE

10th International Conference on

Sustainable Solid Waste Management

Biosorption of a cationic dye using raw and functionalized *Chenopodium quinoa* pericarp biomass after saponin extraction, a sustainable approach to a green, zero waste-management

Supervised by:

Pr. BENHIDA Rachid

Dr. LYAMLOULI Karim

Co-Supervised by:

Presented by: ➤ OULKHIR Anass

Email:

<u>anass.oulkhir@um6p.ma</u> <u>anass.oulkhir@etu.univ-cotedazur.fr</u>

COLLABORATION

Mohammed VI Polytechnic University on MAY 2023

1 GENERAL INTRODUCTION

OUTLINE

3 RESULTS AND DISCUSSION

4 CONCLUSION AND PROSPECTS

INTRODUCTION : TOWARDS SUSTAINABLE MATERIALS

OCP WOHAMMED VI UNIVERSITY

INTRODUCTION : IMPORTANCE OF LIGNOCELLULOSIC BIOMASS AND ITS MAJOR SOURCES

- Abundant biopolymers on earth
- Biodegradable, sustainble and low cost,
- Tailored capability for chemical transformations

Agro-industrial residues (Argan nut shells...)

3

INTRODUCTION : QUINOA BIO-WASTE

Quinoa (Chenopodium quinoa Wild.)

INTRODUCTION : DYES REMOVAL USING BIOSORBENTS

AIMS OF THE WORK

I-SAPONIN EXTRACTION AND QBW WASTE GENERATION

II- BIOSORBENT PREPARATION

0-0

UNIVERSITÉ : CÔTE D'AZUR

RESULTS : KINETICS AND EQUILIBRIUM ISOTHERM

MOHAMMED V

UNIVERSITY

OCP

RESULTS : ADSORPTION KINETICS AND ISOTHERMS

Biosorbents	Conditions	Adsorption	Isotherm model	Kinetic	Reference
		capacity(mg.g ⁻¹)		model	
Banana pseudo-	570 min	333.3	Freundlich		(Bello et al.,
stem	pH 7			_	2018)
Populus tremula	10 min	145.3	Freundlich	_	(Sebeia et
(seeds)	рН б			_	al., 2019)
Chlamydomonas	60 min	115	Freundlich		(Moghazy,
<i>variabilis</i> (algae)	pH 7			D CO	2019)
Agrobacterium	60 min	91	Freundlich	- PSO	(Sharma et
<i>fabrum</i> (bacteria)	pH 11				al., 2018)
Ficus palmata	80 min	6.89	Freundlich	-	(Fiaz et al.,
(Plant leaves)	pH 7			_	2019)
QBW-II	60 min	193,8	Langmuir	_	This work
	pH 7				

<u>Table.</u> Methylene blue biosorption data using various bio-sorbents.

RESULTS : FTIR SPECTROSCOPY ANALYSIS

biosorption.

ΜΟΗΑΜΜΕΟ Λ

UNIVERSITY

OCP

RESULTS : ZETA POTENTIAL AND ZERO-POINT CHARGE MEASUREMENT

MOHAMMED V

UNIVERSITY

OCP

RESULTS : PROPOSED MECHANISMS OF MB BIOSORPTION INTO QBW

CONCLUSION AND PERSPECTIVES

OUR TEAM

PhD. Anass OULKHIR

Dr. Mohammed DANOUCHE

Dr. Karim LYAMLOULI

Pr. Rachid BENHIDA*

ACKNOWLEDGMENT

N Chimie de Nice

AgroBioSciences

Biosorption of a cationic dye using raw and functionalized *Chenopodium quinoa* pericarp biomass after saponin extraction, a sustainable approach to a green, zero waste-management

Presented by:

OULKHIR Anass

Email:

<u>anass.oulkhir@um6p.ma</u> <u>anass.oulkhir@etu.univ-cotedazur.fr</u>

COLLABORATION

- Pr. BENHIDA Rachid
- Pr. LYAMLOULI Karim

Mohammed VI Polytechnic University on MAY 2023