Tannery sludge valorization through biological processes: preliminary evaluation of biogas and short-chain fatty acids (SCFAs) production

Marco Gottardo, Giulia A. Tuci, Aditi C. Parmar,

Paolo Pavan, Francesco Valentino

Dept. of Environmental Sciences, Informatics and Statistics (DAIS)

Università Ca'Foscari Venezia

Tannery sludge from Montebello Vicentino WWTP

Sludge is classified as a **special non-hazardous residue**, disposed of in second-class type B controlled landfill (D.Lgs. 04/06).

37,000 ton/y tannery sludge

Parameter	Average
Total Solid (TS, g/kg)	830 ± 14
Volatile Solid (VS, g/kg)	590 ± 4
COD (g COD/kg TS)	793 ± 18
Total Kjeldahl Nitrogen (TKN; g N/kg TS)	32.8 ± 0.9
Total Phosphorus (P; g P/kg TS)	7.9 ± 0.4

Total Cr = 19.000 – 22.000 mg/kg

Aim of the Research

Landfilling means

rew wasting all the high-quality organic material

that characterizes this waste

☞ high economic impact for the industries

☞ significant environmental impacts

Mostly unexplored material

Circular economy perspectives

Work flow

- 1. Mild-hydrolysis tests (pre-treatment)
 - 2. Acidogenic fermentation in batch
- 3. Semi-continuous acidification tests (CSTR)
 - 4. Biomethanation potential tests (BMP) in batch (post-treatment)

- Evaluate the sludge biodegradability and selection of most appropriate H_2O_2 dosage
- Selection of most appropriate temperature (T) and hydraulic retention time (HRT)

(1) H₂O₂ Pretreatment (mild-hydrolysis)

Image or state o

(2) Acidogenic Fermentation....

Parameters of batch acidification tests

☞ Temperatures: 15, 25, 30, 40 and 50 °C

^{III} Pre-treatment dosage (2 h): 0.4 g H₂O₂/g TS

.... to short chain fatty acids production

The chosen H₂O₂ dosage together with T above 30 °C facilitate the anaerobic fermentation of the organics

(3) Semi-continuous process sCSTR

Parameter	Run 1	Run 2
HRT (d)	4	8
OLR (g VS/L d)	17.5	8.4
H ₂ O ₂ dosage (g/g TS)	0.4	0.4
Temperature (°C)	40	40

Monitored parameters SCFAs concentration (g COD/L) SCFAs/COD_{SOL} ratio (COD/COD) Y_{SCFAs} (g COD_{SCFA}/g VS) pH Total Cr (mg/L)

The semi-continuous processes were performed to define the required data for the final mass-balance assessment

Run 1 (HRT 4.0 d)

Run 2 (HRT 8.0 d)

.... fate of the chromium

Cr was partially released after the oxidative pre-treatment
(119 ± 11 mg Cr/L)

☞ <u>Consequences:</u>

✓ the utilization of tannery sludge fermentation liquid did not any have environmental-safety issues related to the chromium;

 ✓ SCFAs did not act as organic ligands,
no Cr presence in the liquid phase

Hao et al., 2022. Ecotoxic. Env. Safety

Conclusions

- Tannery sludge can be employed to produce **SCFAs** and **biogas**
- Pre- and post-treating the sludge with 0.4 g H₂O₂/g TS improves the overall efficiency

and production SCFAs ($Y_{SCFA} 0.32 \text{ COD}_{SCFA}/g \text{ VS}$) and biogas (SGP = 0.48 m³/kg VS)

Preliminary bass-energy balance revealed a potential 50% of tannery sludge

reduction with a revenue >4,000,000 €/y from SCFAs production

Acknowledgements

A special thanks to Medio Chiampo S.p.a. for providing the raw material for this research

Financial support of the European Union - Next Generation EU: PON "Ricerca e Innovazione" and Project ECS000043 - Innovation Ecosystem Program "Interconnected Northeast Innovation Ecosystem" (iNEST) CUP H43C22000540006.

Thank you!

francesco.valentino@unive.it

