Advanced Thermochemical Conversion of Various Waste Feedstock with CCS for Hydrogen Production – A Life Cycle Assessment

<u>Suviti Chari</u>, Alex Sebastiani, Andrea Paulillo, Paola Lettieri, Massimiliano Materazzi University College London

Solid Waste Management, Chania 2023 21th June 2023

(1) BEIS. UK Hydrogen Strategy; 2021; Vol. 85

(1) IPCC. Mitigation of climate change Summary for policymakers; 2022

(1) Committee on Climate Change. The Sixth Carbon Budget The UK's path to Net Zero. 2020

Understand the environmental value of H_2 with BECCS and the effect of

composition of waste on carbon sequestration potentials

- ✤ Feasibility of using Waste (MSW/Waste Wood) to produce grid-quality H₂ with Carbon capture and storage
- ✤ Identify environmental hotspots of industrially validated Bio-H₂ BECCS process
- Understand how changing biomass content of waste affects environmental impact results
- Compare with other alternative low-carbon hydrogen production technologies

Process Overview: Demonstration Plant (Advanced Biofuels Solutions)

- Will convert 8,000 tonnes of waste per annum into 22 GWh of substitute natural gas (SNG).
- Will be first plant in the world to produce BioSNG from waste (RDF/WW)
- Work is ongoing to demonstrate production of $\operatorname{Bio-H}_2$ for heat and transport.

Process Overview: Waste-to-H₂ with CCS

- Detailed mass-and-energy balances using ASPEN Plus, validated by demo & pilot plant operation
- Modelled commercial facility converts 110,000 tonnes per annum of waste to approximately 50 MWh of fuel-cell quality hydrogen (99.9% purity)
- Atmospheric steam-oxygen gasification as core conversion technology (2 stage FBR & plasma tar reforming)
- Amine-based solvent CO₂ removal technology employed (at 90% removal efficiency, 99% CO₂ purity)
- CO₂ transported to one of UK's CCUS clusters and injected into a saline aquifer

LCA Methodology: Assumptions

- Functional unit: 1 MW of fuel-cell quality H₂ produced
- System Boundary includes: waste transportation (50km), CO₂ transportation by lorry, ship & pipeline, CO₂ injection and fugitive H₂ emissions.

Plant construction is also included in hotspot analysis.

- Zero-burden approach for waste. Counterfactual cases not considered
- Multifunctionality & substitution:
 - Electricity from tail gas (via gas engine) replaces UK grid mix
 - Recovery of metals from MSW for RDF preparation

EF 3.0 Method.

Ecoinvent datasets

(1) Chari, S.; Sebastiani, A.; Paulillo, A.; Materazzi, M. The Environmental Performance of Mixed Plastic Waste Gasification with Carbon Capture and Storage to Produce Hydrogen in the U.K. *ACS Sustain. Chem. Eng.* **2022**.

Complete system boundary: Waste-to-H₂ with CCS

Complete system boundary: Blue-H₂ and Green-H₂

LCA Hotspot Results: MSW & Waste Wood – Climate Change Impact

(1) Amaya-Santos, G.; Chari, S.; Sebastiani, A.; Grimaldi, F.; Lettieri, P.; Materazzi, M. Biohydrogen: A Life Cycle Assessment and Comparison with Alternative Low-Carbon Production Routes in UK. J. Clean. Prod. 2021, 319, 128886

LCA Comparative analysis: Low-carbon H₂ production routes

(1) Amaya-Santos, G.; Chari, S.; Sebastiani, A.; Grimaldi, F.; Lettieri, P.; Materazzi, M. Biohydrogen: A Life Cycle Assessment and Comparison with Alternative Low-Carbon Production Routes in UK. J. Clean. Prod. 2021, 319, 128886. https://doi.org/10.1016/j.jclepro.2021.128886.

(2) Antonini, C.; Treyer, K.; Streb, A.; van der Spek, M.; Bauer, C.; Mazzotti, M. Hydrogen Production from Natural Gas and Biomethane with Carbon Capture and Storage - A Techno-Environmental Analysis. *Sustain. Energy Fuels* **2020**, *4* (6), 2967–2986. https://doi.org/10.1039/d0se00222d.

LCA Comparative analysis: Low-carbon H₂ production routes

LCA Comparative analysis: Low-carbon H₂ production routes

(1) Wang-Erlandsson, L., Tobian, A., van der Ent, R.J. et al. A planetary boundary for green water. Nat Rev Earth Environ 3, 380-392 (2022). https://doi.org/10.1038/s43017-022-00287-8

- Pre-combustion CCS plays a crucial role for GHG mitigation \rightarrow carbon negative technology
- Boundary conditions reveal that biogenic content carries the greatest weight in climate change impact result.
 However, trade-offs exist (contributions to all other categories)
- BECCS capability may change based on waste composition feedstock
- For H₂ production, low-carbon technologies will likely complement not compete

Acknowledgements

Suviti Chari suviti.chari.20@ucl.ac.uk

https://www.linkedin.com/in/suvitichari/

Bioenergy Technology Research Lab Department of Chemical Engineering, UCL

Acknowledgements alos

Appendix

Conventional System

- Slipstream of hydrogen rich syngas taken after water gas shift reactor.
- Transferred to Xebec PSA which produces high purity hydrogen stream and hydrogen rich tail gas.
- Tail gas recycled into the process.
- Hydrogen metered into gas bottles for use in transport.

SEWGS System

- UCL to host SEWGS system at Manufacturing Futures Lab.
- Simulated syngas based on experience from Swindon plant will be injected into system.
- Absorber operated at 300-400C, 5 bar. Desorber operated at 600-700C, 1 bar.
- SEWGS offers significant advantages over conventional WGS coupled with carbon advantage. Far lower GHG emissions associated with process.

Project Timelines

 Installation through 2023, commissioning in H1 2024, operational in H2 2024.

Appendix

BioH₂ purity for transportation

Current Density (mA cm⁻²)

1000

- H_2 and oxidant air supplied to the polymer electrolyte fuel cell (PEFC)
- Contaminants CO₂ and CH₄ fed through the H₂ supply to PEFC.

electrochemical ei innovation lab

- Considerable impact on PEFC performance ٠ observed only beyond 20% (vol.) CH₄.
- PEFC performance recovered to normal after the removal of CH_4 (pure-H₂ repeat case).
- CH₄ acts mainly as *diluent*. \checkmark

- 0.5% CO₂ resulted in significant performance reduction (equivalent to 20%CH₄ dilution).
- PEFC performance not recovered after the removal of CO_2 (pure-H₂ repeat case).
- CO₂ contamination results in *permanent* * performance reduction due to chemical reaction.

Changing Feedstock: Key Data

Key flows	Units	Biohydrogen (MSW)	Biohydrogen (Waste wood)	Blue Hydrogen SMR	Blue Hydrogen ATR	Green Hydrogen
I <u>nput</u>						
Feedstock type		MSW/RDF	Waste wood	Natural gas		Water
Feedstock	kg	442.2/283.6	372.2			226.8
	m ³			116.4	117.6	
Oxygen	kg	89.4	101			n.a.
Electricity	MJ	514	617	27.7	115.7	4974
Thermal energy	MJ	1550	1657	-	-	n.a.
<u>Output</u>						
Hydrogen	MJ	3600	3600	3600		3600
Materials recovered	kg	17.1	-	-	-	-
CO ₂ released	kg	46.5	53.5	120.63	38.1	0
Sequestered CO ₂	kg	414.4	484.1			n.a.

Appendix

■ C (wt%) ■ H (wt%) ■ N (wt%) ■ S (wt%) ■ O (wt%) ■ CI (wt%)

3	Waste fra
	Paper and
84.4	Wood
	Metals
‰) ■ H (wt%) ■ N (wt%) ‰) ■ O (wt%) ■ CI (wt%)	Glass
27% HDPE, 27% LDPE	Textile
	WEEE
	Plastics

Waste fractions [wt% as received]	MSW
Paper and cardboard	22.7
Wood	3.7
Metals	4.3
Class	6.6
Glass	0.0
Textile	2.8
WEEE	2.2
Plastics	10
Inert/aggregates/solid	5.3
<i>.</i>	
Organic fines	35.5
Miscellaneous	7.1

Process Environmental Performance

- Biogenic Carbon 65%
- \rightarrow H₂ purity >99.97%, P=46 bar
- \blacktriangleright CO₂ purity >95%, P=35 bar

* MEA: Monoehanolamine solution (30% wt)

** SEWGS: Sorption enhanced water gas shift

abs

Demo-plant for BioSNG/BioH₂ production

Demo-plant for BioSNG/BioH₂ production (flowsheet)

abs

Feasibility for BioH₂ from waste feedstock

Stream	Mass flow [kg/h]	Energy [MW _{ннv}]	H ₂ purity
RDF input	361.5	1.66	
BioH₂ from PSA	25.5	1	>99.97%
Tail gas from PSA	488.6	0.32	~14%

- Absence of acid contaminants and impurities after the gas cleaning stage;
- Increased H₂ fraction after the WGS stage upto 56% dry; CO reduction to 6% dry
- CO_2 removal efficiency > 99% with the PSA
- Approximately 40% H₂ is lost with tail gas

absl

Process optimization: tail gas recirculation

UC

Hotspot Analysis

- Credits for net electricity production from grid-quality hydrogen produced from gas engine
- Credits from ferrous & non-ferrous metal recovery during MSW preparation
- Burdens for reforming process, CO₂
 liquefaction and H₂ compression to climate change and photochemical ozone formation
- Burdens for gas cleaning process, primarily alkali scrubber, to most categories

