

Water resistance of recycled cement compressed earth blocks

J. Alexandre Bogas¹, Ricardo Cruz¹, Bruno Azevedo¹, Andrea Balboa¹, Vitor Sousa¹

¹ CERIS, Department of Civil Engineering, Architecture and Georresources (DECivil), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon, Portugal;

June 2023

Objectives:

Experimental Program

IP (%)

density (kg/m³)

8

2700

 From paste waste with
 > 90 days

- Phase 1 grinding/sieving/ milling as in usual waste treatment
- Phase 2 Thermal activation treatment at low temperature 650 °C

TÉCNICO fundação LISBOA fect

Composition and pro	СЕВ	Soil (%)	OPC (%)	RC (%)	Water (%)	w/b	
• 7 CEB compositions	-	OPC10	90	10	-	15	1.45
	5-10% stabiliser	RC10	90	-	10	16.5	1.6
(220x105x60 mm):	0, 20, 50, 100% R	OPC5	95	5	-	15.2	2.93
		RC5	95	-	5	16.2	3.13
• Pulverization \rightarrow sieving	RC2OPC8	90	8	2	15	1.45	
		RC5OPC5	90	5	5	15.5	1.5
 Manual Press 		UCEB	100	-	-	14.4	-

lĵ

Test Methods:

• Water absorption (immersion, capillary, low pressure);

- Curing: 7 days sprayed; Then, lab conditions (19-26°C and 55-75% RH)
- Capillary and low pressure: Oven-dried at 100°C before testing

Test Methods:

• Water permeability; Water erosion (representative of heavy rain impact)

• Water permeability: Saturated and subjected to 100 KPa pressure head

• **Spry test:** Subjected to **50**-250 kPa for 1 hour (5x higher the standard)

Results and discussion

- **UCEB** disintegrated in water
- **Tabsorption with T%RC** ($\uparrow P_{\tau}$; \uparrow water and paste volume)

TÉCNICO LISBOA

II

Not significant up to 50% RC

Immersion water absorption

REPÚBLICA

PORTUGUESA

Fundação

para a Ciência

Capillary water absorption

- $A_{bs,72h}$ and CA with MRC (up to 69%)
- More refined porosity in RC (↑ cap. action)
- Pre-dried at 100°C (Higher volume of finer pores in RC)

Capillary water absorption

• RC blocks within the low absorption class

CEB	C _{b,10min}	C _{b,10min} Class	NTC 5324 (2004)		
OPC CSEB	13 g/cm ² .min ^{0.5}	< 20 g/cm ² .min ^{0.5}	Class I - very low absorption		
RC CSEB	28 g/cm ² .min ^{0.5}	< 40 g/cm ² .min ^{0.5}	<u>Class II - low absorption</u>		

Low pressure absorption (Karsten)

- Same trend in surface absorption
- 50% higher C_{abs,LP,5min} in RC CEB than OPC CEB
- Also pre-dried at 100°C (all pore space available for absorption)

Water permeability

- $K_{w,RC CEB} \cong 2 \times K_{w,OPC CEB}$
- More affected with pore connectivity (Low P_T variation \Rightarrow high \uparrow of K_w)
- Better hygrothermal inertia and water vapour permeability

Water erosion – Spry Test

- CSEB Erosion rate <1 mm/h
 (0.5 2.5 bar)
- Similar water depth penetration (DP)

IL

TÉCNICO

		Test		Erosion		
Mixture	Pressure	time	DE	rate	DP	Class
	(bar)	(min)	(mm)	(mm/h)	(mm)	(mm)
PC10	2.5	60	-	< 1	38	EI1
RC5PC5	2.5	60	-	< 1	36	EI1
RC10	2.5	60	-	< 1	39	EI1
UCEB	0.5	7	60	514	N/A	EI5

NZS 4298 (1998) - 1 h at 50 kPa

Classes	DE (mm/h)
EI1	<10
EI2	10 < DE < 25
EI3	25 < DE < 45
EI4	45 < DE < 60
EI5	60 ≤ DE

EI - Erosion index

Water erosion – Spry Test

- CSEB Low erosion rate <1 mm/h (2.5 bar)
- **Stabilization is fundamental**

Water absorption and permeability increased with RC content

Mix design optimization to improve compactness is needed

No significant reduction of water resistance, even after 48 h water immersion and severe water erosion (compared to OPC)

 \cong 180 kg/m³ stabiliser (10%) \Rightarrow 100% RC \Leftrightarrow 55 kg/m³ clinker

CO₂ savings - 20% RC (16%); 50% RC (38%); 100% RC (72%);

RC proves to be viable as a stabilizer for CEB

Water resistance of recycled cement compressed earth blocks

Thank you for your attention

