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H2

Transitioning Towards 
Hydrogen Economy 

Benefits

• Hydrogen as an energy carrier

• Energy recovery from industrial waste, 

H2S is crucial for decarbonisation

• Gate-to-gate Life cycle assessment (LCA) 

was conducted on an experimental 

microkinetic multistep reaction model 

• Pilot-scale H2S splitting simulation plant 

was built by integrating the two-step 

solar thermochemical process

Usage



Driving Force of 
this Research

• Almost 47% of the world's hydrogen
generation as of the end of 2021 comes
from natural gas, 27% from coal, 22%
from oil (as a by-product), and just
around 4% from electrolysis
(Hydrogen, n.d.)

• Emitting H2S, a dangerous and
poisonous gas, into the atmosphere
without treatment would lead to
detrimental environmental impacts

• The hydrogen element is usually
wasted due to the high cost of tail gas
treatment (Huang and T-Raissi, 2008)

Source: Climate 
Watch Data CAIT



Key Findings Based on Previous Literature

Findings Reference

Cu-Cl cycle's thermochemical water-splitting approach was 

better than other technologies in terms of carbon dioxide 

equivalent emissions, followed by wind and solar electrolysis to 

produce hydrogen

Cetinkaya et al. (2012) 

Renewable energy which includes solar, and wind are the only 

scenarios that produce hydrogen with minimal environmental 

damage

Gerloff (2021)

One of the most promising methods for creating green hydrogen 

at scale effectively and using thermal energy is thermochemical 

water splitting

Ozcan et al. (2023)

LCA could be a useful evaluation approach to assess various 

hydrogen-generating processes

Zhang et al. (2022)



Key Parameters of the H2S Simulation Plant

Parameter Value Unit 

Plant Reactors   

Specific Surface  0.45 m2/g 

Active Metal Dispersion 20 % 

Size of Cell  1.0 × 1.0 Mm 

Wall Thickness  0.2 Mm 

Total effective internal surface area per unit 

volume  

0.28 × 106 m-1 

Sulfurization Step   

Feed Volumetric Flowrate 80 MMSFD 

Hydrogen Sulfide, H2S  0.5 Mol 

Nitrogen, N2  0.5 Mol 

Temperature  500 °C 

Pressure  1.8 Bar 

Regeneration Step   

Feed Volumetric Flowrate  40 MMSFD 

Carbon Dioxide (CO2) 1.0  

Temperature (°C) 700 °C 

Pressure 1.8 Bar 

 1 
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LCA of Pilot-Scale Two-Step Thermochemical H2S Splitting 
Powered by Solar Energy

System Boundary to 
produce 1kg of Hydrogen



Environmental Performance of H2S Splitting Plant 
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Midpoint indicators

Hydrogen sulfide Carbon dioxide Water Make-up water Electricity (solar)

Midpoint level impact assessment for the operational phase of the 
H2S splitting process model to produce 1 kg of H2
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Significant Findings

Table: Endpoint level impact assessment for the 
operational phase of the H2S simulation plant to 

produce 1 kg of H2

Table: Endpoint level impact assessment for 
constructing 1 unit of H2S splitting simulation plant

Damage 

category

Human 

health 

(DALY)

Ecosystems 

(species.yr)

Resources 

(USD2013)

Hydrogen 

sulfide 

-1.10×10-9 -1.67×10-12 -4.41×10-5

Water 9.93×10-14 5.35×10-16 2.68×10-10

Make-up 

water

4.52×10-11 1.86×10-13 3.68×10-7

Electricity 

(solar)

4.42×10-9 9.30×10-12 1.92×10-4

Total 3.36×10-9 7.81×10-12 1.48×10-4

Damage 

category

Human 

health 

(DALY)

Ecosystems 

(species.yr)

Resources 

(USD2013)

Storage 4.37×105 2.43×102 3.39×109

Water 

Separator
4.62×10-2 2.57×10-5 3.59×102

Heat 

Exchanger
1.51 8.42×10-4 1.17×104

Compressor 3.78×10-1 2.10×10-4 2.93×103

Reactor 7.43 4.95×10-3 7.66×104

Amine Plant 1.50×101 8.10×10-3 1.40×105

Solar Plant 5.21×104 1.19×102 1.28×109

Total 4.89×105 3.62×102 4.67×109
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Scenario
Source of 

Electricity
Description

Baseline Solar
Generation of electricity with a 

20MW solar tower.

Scenario 1 Wind

Production of high voltage 

electricity at grid-connected wind 

power plants with a capacity of 

more than 3MW

Scenario 2 Nuclear

Production of high voltage 

electricity at a grid-connected 

nuclear pressure water reactor 

(PWR)

Scenario 3 UAE grid

Electricity available on the high 

voltage level in United Arab 

Emirates

Sensitivity Analysis

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Solar Wind Nuclear AE Grid

Im
p

ac
t 

(%
)

Electricity source 

Human carcinogenic toxicity Freshwater ecotoxicity

Marine ecotoxicity

Midpoint level impact assessment of producing 1 kg of H2

using different sources of electricity



• This manufacturing phase of this 
technology has the highest impact 
towards human health because of the raw 
material consumption that mainly consists 
of steel. 

• Treating H2S instead of directly releasing 
it to the atmosphere has significantly 
improved the environmental performance 
of this process. 

• Storage has the highest contribution, 
followed by the solar plant in impacting all 
18 midpoint categories. 

• H2S splitting technology has the least 
impact towards both midpoint categories 
when compared with other hydrogen 
production methods followed by 
electrolysis powered by renewable 
resources. 

• Electricity powered by renewable sources 
needs to reduce adverse effects towards 
human health to be more feasible.

CONCLUSION & POLICY IMPLICATION



www.linkedin.com/in/kalpps
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