

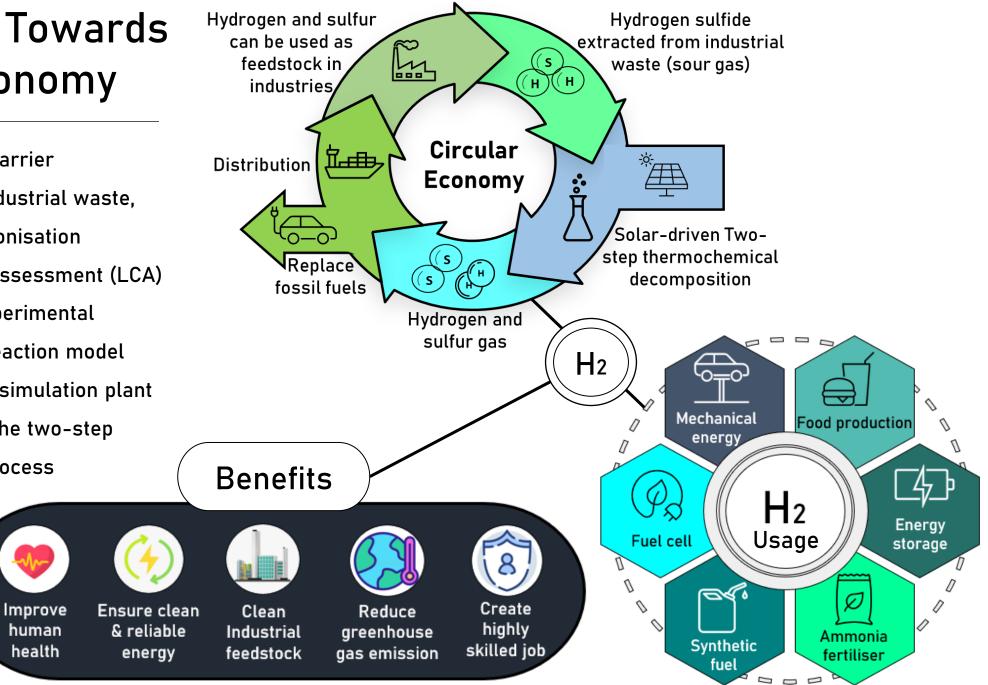
Environmental Performance of Hydrogen Production from Industrial Waste: Towards Circular Economy

Authors: KALPPANA CHELVAM & MARLIA M HANAFIAH

Department of Earth Sciences and Environment, Faculty of Science and Technology, The National University of Malaysia (UKM)

10TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT

CHANIA202


the state of

manage of

21-24 JUNE

Transitioning Towards Hydrogen Economy

- Hydrogen as an energy carrier
- Energy recovery from industrial waste,
 H₂S is crucial for decarbonisation
- Gate-to-gate Life cycle assessment (LCA) was conducted on an experimental microkinetic multistep reaction model
- Pilot-scale H2S splitting simulation plant was built by integrating the two-step solar thermochemical process

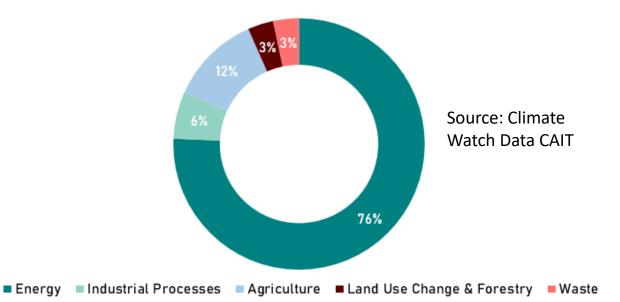
Driving Force of this Research

- Almost 47% of the world's hydrogen generation as of the end of 2021 comes from natural gas, 27% from coal, 22% from oil (as a by-product), and just around 4% from electrolysis (*Hydrogen*, n.d.)
- Emitting H₂S, a dangerous and poisonous gas, into the atmosphere without treatment would lead to detrimental environmental impacts
- The hydrogen element is usually wasted due to the high cost of tail gas treatment (Huang and T-Raissi, 2008)

Dependence on Fossil Fuels

Finite resources that contribute to climate change

Inefficiencies


Fossil fuel combustion results in energy losses

Limited Energy Storage

The limited capacity may not be able to meet the increasing demand

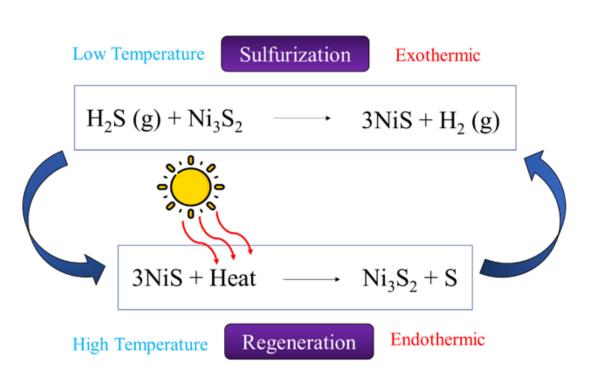
A world without Hydrogen

Global Sources of GHG Emissions

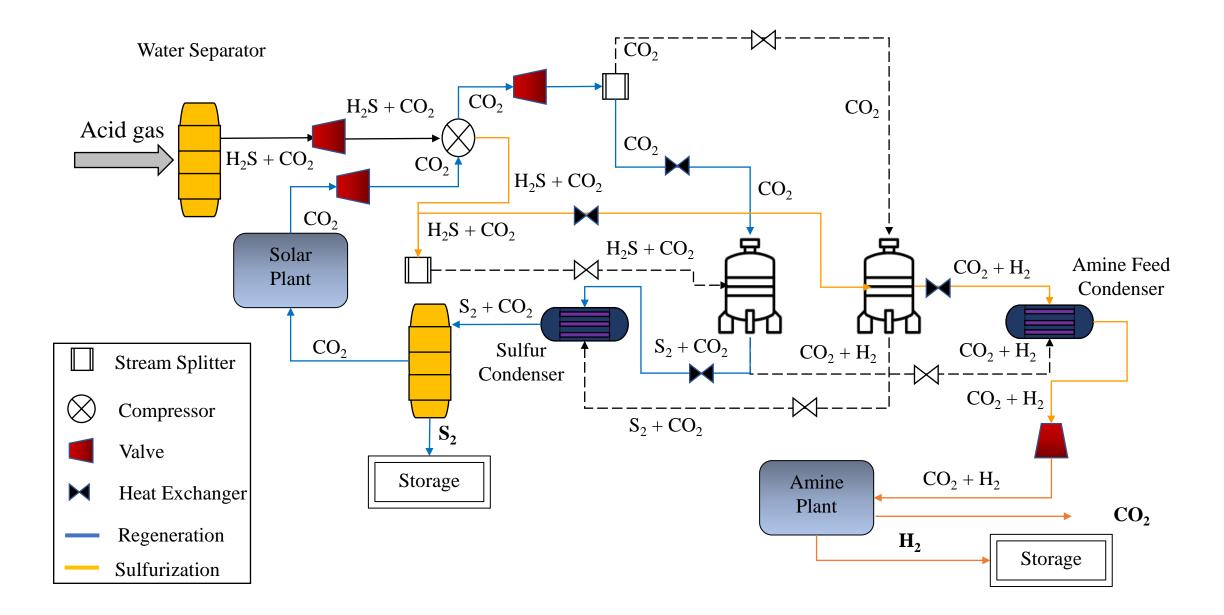
Lack of Energy Security

Supply disruptions & geopolitical conflicts

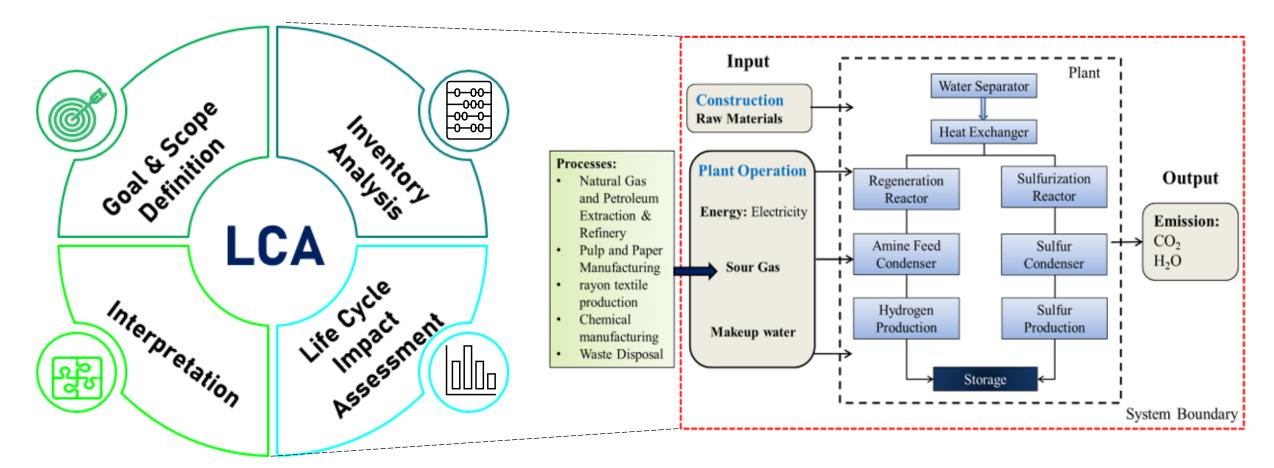
Air Pollution


Fossil fuel for energy prodcution results in higher rate of GHG emissions

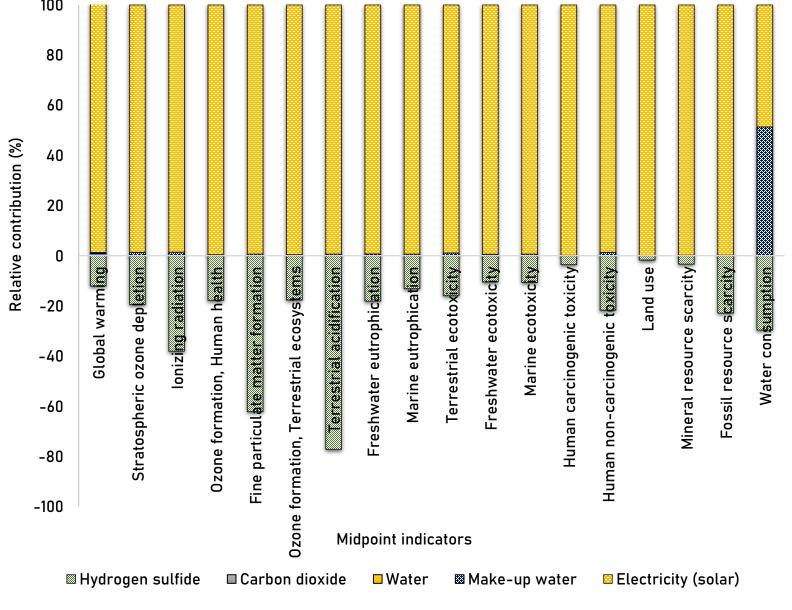
Key Findings Based on Previous Literature


Findings	Reference
Cu-Cl cycle's thermochemical water-splitting approach was	Cetinkaya et al. (2012)
better than other technologies in terms of carbon dioxide	
equivalent emissions, followed by wind and solar electrolysis to	
produce hydrogen	
Renewable energy which includes solar, and wind are the only	Gerloff (2021)
scenarios that produce hydrogen with minimal environmental	
damage	
One of the most promising methods for creating green hydrogen	Ozcan et al. (2023)
at scale effectively and using thermal energy is thermochemical	
water splitting	
LCA could be a useful evaluation approach to assess various	Zhang et al. (2022)
hydrogen-generating processes	

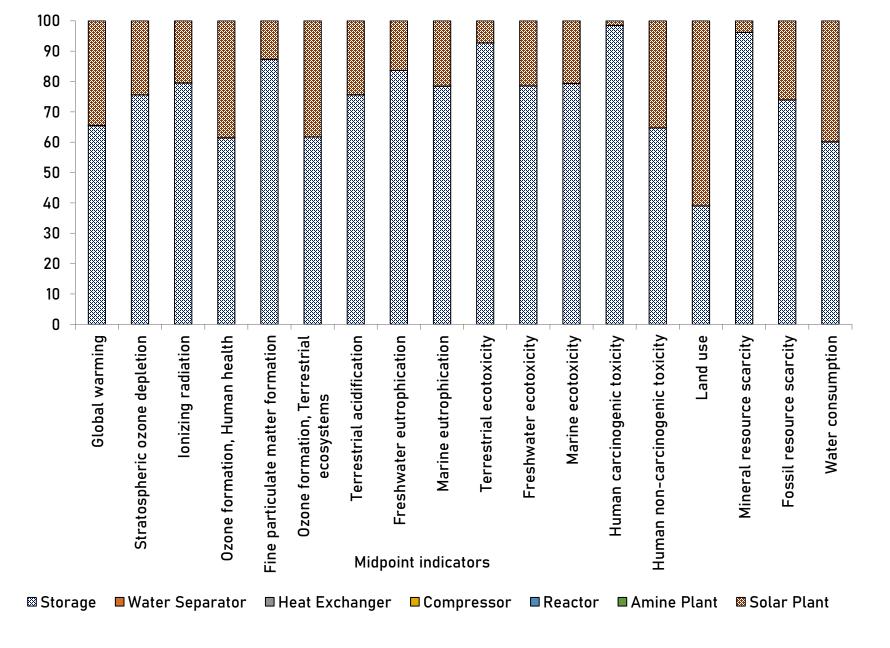
Key Parameters of the H₂S Simulation Plant


Parameter	Value	Unit
Plant Reactors		
Specific Surface	0.45	m²/g
Active Metal Dispersion	20	%
Size of Cell	1.0 imes 1.0	Mm
Wall Thickness	0.2	Mm
Total effective internal surface area per unit	$0.28 imes 10^6$	m ⁻¹
volume		
Sulfurization Step		
Feed Volumetric Flowrate	80	MMSFD
Hydrogen Sulfide, H ₂ S	0.5	Mol
Nitrogen, N ₂	0.5	Mol
Temperature	500	°C
Pressure	1.8	Bar
Regeneration Step		
Feed Volumetric Flowrate	40	MMSFD
Carbon Dioxide (CO ₂)	1.0	
Temperature (°C)	700	°C
Pressure	1.8	Bar

H₂S Splitting Simulation Plant



LCA of Pilot-Scale Two-Step Thermochemical H₂S Splitting Powered by Solar Energy


System Boundary to produce 1kg of Hydrogen

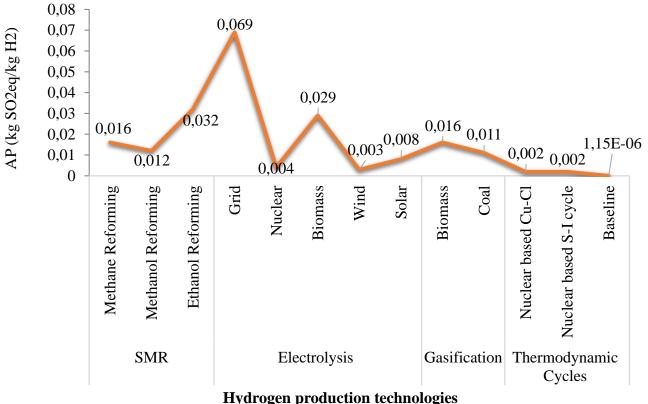
Environmental Performance of H₂S Splitting Plant

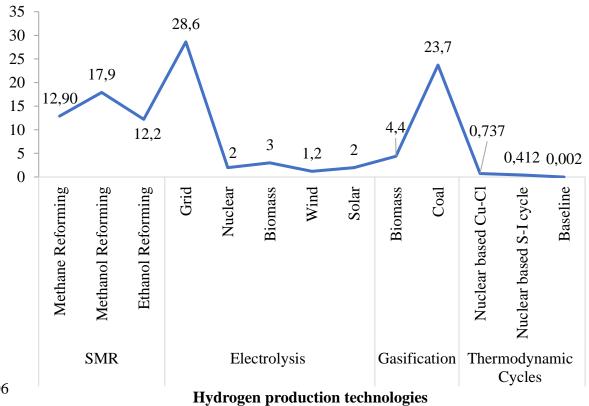
Midpoint level impact assessment for the operational phase of the H_2S splitting process model to produce 1 kg of H_2

Relative contribution (%)

Midpoint level impact assessment for the constructional phase of 1 unit of H₂S splitting plant

Significant Findings

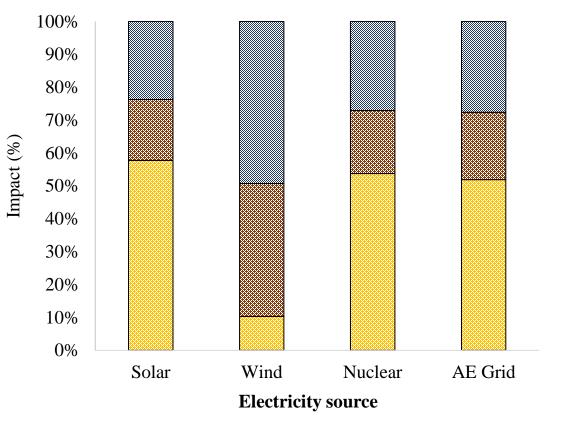

Table: Endpoint level impact assessment for the operational phase of the H₂S simulation plant to produce 1 kg of H_2


Table: Endpoint level impact assessment for constructing 1 unit of H₂S splitting simulation plant

Damaga	Human	Ecosystems	Resources
Damage	health	(species.yr)	(USD2013)
category	(DALY)		
Hydrogen	-1.10×10 ⁻⁹	-1.67×10 ⁻¹²	-4.41×10 ⁻⁵
sulfide			
Water	9.93×10 ⁻¹⁴	5.35×10 ⁻¹⁶	2.68×10 ⁻¹⁰
Make-up	4.52×10 ⁻¹¹	1.86×10 ⁻¹³	3.68×10 ⁻⁷
water			
Electricity	4.42×10 ⁻⁹	9.30×10 ⁻¹²	1.92×10 ⁻⁴
(solar)			
Total	3.36×10 ⁻⁹	7.81×10 ⁻¹²	1.48×10 ⁻⁴

Damage category	Human health (DALY)	Ecosystems (species.yr)	Resources (USD2013)
Storage	4.37×10 ⁵	2.43×10 ²	3.39×10 ⁹
Water Separator	4.62×10 ⁻²	2.57×10 ⁻⁵	3.59×10²
Heat Exchanger	1.51	8.42×10 ⁻⁴	1.17×10 ⁴
Compressor	3.78×10 ⁻¹	2.10×10 ⁻⁴	2.93×10 ³
Reactor	7.43	4.95×10 ⁻³	7.66×10 ⁴
Amine Plant	1.50×10 ¹	8.10×10 ⁻³	1.40×10 ⁵
Solar Plant	5.21×10 ⁴	1.19×10 ²	1.28×10 ⁹
Total	4.89×10 ⁵	3.62×10 ²	4.67×10 ⁹

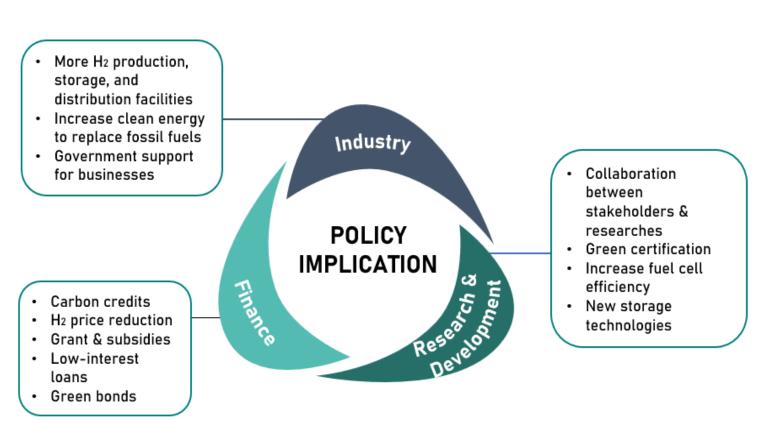
Comparison of the Environmental Performance of Producing Hydrogen via H₂S Splitting and Various Other Technologies



GWP (kgCO2eq)

Sensitivity Analysis

Scenario	Source of Electricity	Description
Baseline	Solar	Generation of electricity with a
	Solar	20MW solar tower.
Scenario 1	Wind	Production of high voltage
		electricity at grid-connected wind
		power plants with a capacity of
		more than 3MW
Scenario 2	Nuclear	Production of high voltage
		electricity at a grid-connected
		nuclear pressure water reactor
		(PWR)
Scenario 3	UAE grid	Electricity available on the high
		voltage level in United Arab
		Emirates



Human carcinogenic toxicityFreshwater ecotoxicityMarine ecotoxicity

Midpoint level impact assessment of producing 1 kg of H₂ using different sources of electricity

CONCLUSION & POLICY IMPLICATION

- This manufacturing phase of this technology has the highest impact towards human health because of the raw material consumption that mainly consists of steel.
- Treating H₂S instead of directly releasing it to the atmosphere has significantly improved the environmental performance of this process.
- Storage has the highest contribution, followed by the solar plant in impacting all 18 midpoint categories.
- H2S splitting technology has the least impact towards both midpoint categories when compared with other hydrogen production methods followed by electrolysis powered by renewable resources.
- Electricity powered by renewable sources needs to reduce adverse effects towards human health to be more feasible.

REFERENCE

- Cetinkaya, E., Dincer, I., & Naterer, G.F. 2012. Life cycle assessment of various hydrogen production methods. *Int. J. of Hydrogen Energy*, 37(3): 2071-2080.
- Gerloff, N. 2021. Comparative Life-Cycle-Assessment analysis of three major water electrolysis technologies while applying various energy scenarios for a greener hydrogen production. *J. of Energy Storage*, 43: 102759.
- Huang, C. & T-Raissi, A. 2008. Liquid hydrogen production via hydrogen sulfide methane reformation. *J. of Power Sources*, 175: 464-472.
- Zhang, J., Ling, B., He, Y., Zhu, Y., & Wang, Z. 2022. Life cycle assessment of three types of hydrogen production methods using solar energy. *Int. J. of Hydrogen Energy*, 47(30): 14158–14168.
- *Hydrogen. (n.d.).* Retrieved March 17, 2023, from <u>https://www.irena.org/EnergyTransition/Technology/Hydrogen</u>
- Ozcan, H., El-Emam, R.S., & Amini Horri, B. 2023. Thermochemical looping technologies for clean hydrogen production – Current status and recent advances. *J. of Cleaner Prod.*, 382, 135295.

Thanks!

Acknowledgements

- H2GEN Group
- SEMrg Research Group
- National University of Malaysia (UKM)
- Khalifa University, United Arab Emirates

p114981@siswa.ukm.edu.my

www.linkedin.com/in/kalpps