

Improving anaerobic fermentative performance of food waste by Fe-modified biochar: FeBC synthesis and application in fermentation system

Room 1 Session IX 12.30-12.45, 22 June 2023

By Bu Jie

NUS Environmental Research Institute, National University of Singapore Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II Campus for Research Excellence and Technological Enterprise (CREATE)

The Enormous Scale of Global Food Waste

Total annual household food waste produced in selected countries*

- Total food waste per year (tonnes)
- Estimated food waste per capita (kg)

^{*} UNEP estimates with high or medium confidence Source: UNEP Food Waste Index Report 2021

- → Simple parameter control;
- → all the microorganisms in a reactor;

- → higher organic loading rates;
- → condition adjustment for optimization phases;
 → reduction in the shocks due to organic loading;
 - → Combination of reactors in different configurations.

Carbon

materials

■ Enhancing microbial growth

■ Aggregating anaerobes

■ Supplementing nutrients

■ Promoting electron transfer

■ Improving enzyme activity

■ Buffering system pH

Challenges

- The efficiency of anaerobic fermentation of food waste to produce H₂/CH₄ needs to be improved
- Effect of Fe-modified biochar on anaerobic fermentation remains unclear
- The recyclability of iron-based biochar has not been studied well

Groups	P (mM)	R _{max} (mM/h)	λ (h)	\mathbb{R}^2
Control	25.50	2.93	4.15	0.98
FeBC-treated	33.73	37.10	5.84	0.99

Summary

- For the first stage, H₂ production from FW was notably promoted by 32.3% with FeBC treatment.
- For the second stage, FeBC significantly improved methane production by 22.8%
- FeBC released iron slowly during fermentation and affects microbial community and EPS composition

Next: Optimizing FeBC preparation process for improving its recyclability

Acknowledgement: This research is supported by the National Research Foundation, Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programm

