Closed landfill as an anaerobic digester for treating young leachate

Anusree Nalladiyil Sughosh Pundarika Prof G L Sivakumar Babu

Centre for Sustainable Technologies, Indian institute of Science, Bangalore, Karnataka, India

What is the problem? Handling of leachate

Estimation of the leachate quantity

Standard Method V = 0.15 X R X A

- R average annual rainfall (m) Annual rainfall Bangalore city -1325 mm
- A surface area of landfill (m²)

Closed landfill

Active landfill

Volume of leachate generated in Mittiganahalli landfill site is 24.13 m³/year

Quantity leachate is >75% total precipitation 120.64 m³/year

- Leachate quantity in active landfill is high compared to the closed landfills
- Active landfill leachate is highly biodegradable
- Leachate treatment unit requirements differs as biodegradability and quantity will decrease over time

Solution :

Recirculating active leachate in the closed landfill

Objective

 To treat active leachate by recirculating in a solid-state stratified bed reactor using MSW collected from a closed landfill site

 To study the effect of recirculation on MSW by measuring gas production, settlement, and the characteristics of the recirculated leachate.

Methodology

MSW characteristics

Parameters	Closed Landfill leachate	Active Landfill leachate	
рН	7.69	5.85	
Electrical Conductivity µS/cm	17400.00	37346.67	
Total Dissolved solids mg/l	12800.00	23280.00	
Biochemical oxygen demand mg/l	7200.00	10450.00	
Chemical Oxygen Demand mg/l	16000.00	31500.00	
Sulphate as SO ₄ , mg/l	165.80	1427.17	
Chloride as Cl, mg/l	1949.75	3072.33	
Total Alkalinity as CaCO ₃ , mg/l	7800.00	12833.33	
Sodium as Na, mg/l	718.00	3828.33	
Potassium as K, mg/l	659.00	2943.33	
Nitrate as NO ₃ , mg/l	1376.00	1809.17	
Total phosphorous as P, mg/l	20.14	59.00	
Ammoniacal nitrogen as N, mg/l	509.20	43.03	
Total Kjeldahl nitrogen as N, mg/l	1273.00	1152.79	
Nitrite as NO ₂ , mg/l	<0.1	<0.1	

Reactor study

- MSW components greater than 20 mm screen was shredded and blended well prior to being placed in the reactors.
- Waste was hydrated to 30% water content and packed in a cylindrical reactor of 1000 mm height and 170 mm diameter.
- MSW layer is compacted in six lifts to obtain a packing density of $620 \pm 10 \text{ kg/m}^3$.

Leachate characteristic	CS Before	R1	R2
Parameter	recirculation	After recir	culation
рН	5.65	8.49	8.05
Electrical Conductivity S/cm	33500	10660	16480
Total Dissolved solids mg/l	21558	6800	10600
Bio-chemical oxygen demand	8600	1200	5500
Chemical Oxygen Demand mg/l	26500	4000	8000
Sulphate as SO ₄ , mg/l	1327	49.4	90
Total Alkalinity as CaCO3, mg/l	11500	360	480

Results

Daily biogas production rate

Results

Conclusions

- Recirculating active landfill leachate in a closed landfill site is a promising solution to eliminate the leachate generated in active landfill.
- Quantity reduction, and extensive reduction in BOD, COD, total dissolved solids and heavy metals in recirculated leachate.
- Increased gas production and settlement of the closed landfill

Acknowledgement

• Funding agency - Prime minister's research fund, Government of India

Thank you

Anusree Nalladiyil Centre for Sustainable Technologies Indian Institute of Science Bangalore Karnataka , India <u>anusreen@iisc.ac.in</u>

