

LIFE BIOGASNET: Sustainable Biogas Purification System in Landfills and Municipal Solid Wastes Treatment Plants

Biogenic sulfur flocculation from pilot bioscrubber for landfill biogas desulfurization

Sandra Torres-Herrera, Javier Palomares-Cortés, José Joaquín González-Cortés, Xavier Gamisans, Domingo Cantero and Martín Ramírez

Department of Chemical Engineering and Food Technology, University of Cadiz, Puerto Real, Cadiz, 11510, Spain

10th International Conference on Sustainable Solid Waste Management 21 June 2023, Chania, Crete, Greece

Reactores biológicos y enzimáticos

Sandra Torres-Herrera

Position: PhD Student (University of Cádiz)

Education:

- B.Sc. in Biotechnology (University of Cádiz)
- M.Sc. in Agri-food programme (University of Cádiz)

Research interest:

• Effluent gas biofiltration, such as air (VOCs removal) and biogas (desulfurization and upgrading)

Profiles:

https://orcid.org/0000-0001-8494-9739 https://www.researchgate.net/profile/Sandra-Torres-Herrera Scopus Identifier - 57218475861

Ę

Revalorization of biogas

H ₂ S Drawbacks
Toxic
Corrosive
Produce SO ₂ (combustion)

Anoxic biodesulfurization

• Desulfurization widely studied in BTFs

BI@GASNET

DRAWBACKS

- Elemental sulfur accumulation
 - Blockages
 - Technical stop
 - Reinoculation
 - Operating cost increase

• Sulfate is not desirable because it can be reduced again to H₂S in anaerobic conditions

Ę

Anoxic biodesulfurization

F

LIFE BIOGASNET: SUSTAINABLE BIOGAS PURIFICATION SYSTEM IN LANDFILLS AND MUNICIPAL SOLID WASTES TREATMENT PLANTS Main Project Objective

LIFE BIOGASNET European project demonstrates a new cost-effective and environmental friendly technology for biogas desulfurization based on biological processes. The project aims to boost the use of biogas as a sustainable energy source and to promote renewable energies production through the circular economy concept.

* Prototype installed at the Miramundo-Los Hardales environmental ecopark (Cadiz, Spain)

F

LIFE BIOGASNET: SUSTAINABLE BIOGAS PURIFICATION SYSTEM IN LANDFILLS AND MUNICIPAL SOLID WASTES TREATMENT PLANTS Main Project Objective

LIFE BIOGASNET European project demonstrates a new cost-effective and environmental friendly technology for biogas desulfurization based on biological processes. The project aims to boost the use of biogas as a sustainable energy source and to promote renewable energies production through the circular economy concept.

* Prototype installed at the Miramundo-Los Hardales environmental ecopark (Cadiz, Spain)

Ę

LIFE BIOGASNET: SUSTAINABLE BIOGAS PURIFICATION SYSTEM IN LANDFILLS AND MUNICIPAL SOLID WASTES TREATMENT PLANTS Main Project Objective

LIFE BIOGASNET European project demonstrates a new cost-effective and environmental friendly technology for biogas desulfurization based on biological processes. The project aims to boost the use of biogas as a sustainable energy source and to promote renewable energies production through the circular economy concept.

* Prototype installed at the Miramundo-Los Hardales environmental ecopark (Cadiz, Spain)

Ē

Characteristics of sulfur

Chemical sulfur Non-toxic Low solubility in water

Biogenic sulfur Negative charge at pH 8 Particles are hydrophilic Stable colloidal suspension

Difficulty in settling

Sulfur recovery methods

	oagulation- locculation	Settling
 Factors Flocculant type Flocculant dose Stirring speed Mixing time pH Temperature 	Coagulants	Flocculants
	Polyaluminum chloride (PAC) $Al_2(SO_4)_3$ FeCl ₃	Polyacrylamide as: Anionic Cationic
JarTest method	NaAlO ₂	Non-ionic

Material and methods

Ę

CHANIA 2023 ///

Operating requirements of desulfurization stage

Start-up

100 L of inoculum from STP Tap water up to 761 L Nutrients (Na₂CO₃; NaNO₃; NH₄Cl and fertilizer)

First stage

Feeding with Na₂S in order to increase the biomass concentration

Long-Term Operation

Landfill Biogas:

 $[H_2S]_{in}$ 146.1 ± 54.2 ppm_v $[O_2]_{in}$ 1.77 ± 0.91% 50 m³ h⁻¹ (nominal value)

Liquid Nitrified:

Pump on/off

- PID control
- H-L control

BIOGASNET

Material and methods

Ę

Operating requirements of desulfurization stage

Operational parameters: pH in CSTR ORP in CSTR Temperature in CSTR Level in CSTR H_2S and O_2 in biogas outlet Pressure in Bioscrruber Recirculation flow Biogas Flow

BI@GASNET

Material and methods

Flocculation Rate-Jar Test

Ē

*Torres-herrera, S., González-Cortés, J.J., Almenglo, F., Yeste, M.P., Ramírez, M., Cantero, D.: Optimization of biogenic sulfur flocculation from an anoxic desulfurization bioreactor using response surface methodology. Fuel. 323, 124367 (2022). https://doi.org/10.1016/j.fuel.2022.124367

Results and discussion

Long-Term Operation

Ē

RE (%)

Results and discussion

Ę

Test the sulfide removal limits of the system, adding sulfide salt solution.

A maximum IL of 66.4 gS- H_2 S m⁻³ h⁻¹ was reached.

Maximum EC of 49.5 \pm 0.6 gS-H₂S m⁻³ h⁻¹ RE of 96.5 \pm 1.1% Maximum sulfur production of 61%

Nitrate demand: 318 g $N-NO_3^- d^{-1}$

BIOGASNET

Results and discussion

Ę

Application of flocculation method

Conclusions

- The desulfurization of real biogas has been successfully carried out on a pilot-scale standing as a feasible alternative to the current physical-chemical processes.
- Low H₂S concentration and high O₂ concentration at the inlet biogas stream caused a decrease in nitrate demand, leading to aerobic H₂S oxidation.
- For an IL of 51.2 gS-H₂S m⁻³ h⁻¹ (using sodium sulfide), the BIOGASNET technology can reach a maximum EC of 49.5 \pm 5.3 gS-H₂S m⁻³ h⁻¹ and a maximum RE of 96.5 \pm 1.1%. In these conditions, the value of sulfur production was 61%.
- A flocculation sulfur rate of 97.6 \pm 0.9% was achieved for an initial sulfur concentration of 3,696 \pm 77 mg S⁰ L⁻¹.

LIFE BIOGASNET: Sustainable Biogas Purification System in Landfills and Municipal Solid Wastes Treatment Plants

Thank you !

10th International Conference on Sustainable Solid Waste Management

21 June 2023, Chania, Crete, Greece