Environmental evaluation of innovative biorefinery process

K. Czerwinska¹, S. Del Pero², L. Lombardi³, A. Polettini⁴, R. Pomi⁴, A. Rossi⁴, S. Shivali³, M. Sliz¹, M. Wilk¹, T. Zonfa⁴

¹AGH University of Science and Technology, Kraków, Poland
²University of Florence, Florence, Italy
³Niccolò Cusano University, Rome, Italy
⁴Department of Civil and Environmental Engineering, University of Rome “La Sapienza”, Rome, Italy
Summary

- BBCircle project

Materials and method
- Life Cycle Assessment
- Goal and scope definition (G&S)
- Life Cycle Inventory (LCI)

Results and discussion - preliminary
- Life Cycle Impact Assessment (LCIA)

Conclusions
BBCircle project

The BBCircle project, funded by the Lazio Region (IT), is aimed at integrating different processes to produce biomaterials, biofuels, capturing CO$_2$ and promote circularity, in reference to the suitable and available substrates in the regional territory. (2021-2023)

Link

BBCircle – Biomaterials, Biofuels, CO2 sequestration and Circularity. A study about the possibility to implement Biorefineries in the Lazio Regione

http://www.dicea.uniroma1.it/node/1220
BBCircle project – Biorefinery configuration

“... is aimed at integrating different processes to produce biomaterials, biofuels, capturing \(\text{CO}_2 \) and promote circularity, in reference to the suitable and available substrates in the regional territory. The biorefinery approach will be implemented...”

Research pathway

- **Laboratory tests** → **Preliminary design of process layout** → **LCA**
Dairy industry

- Dairy products in EU-28 area: 160 millions in 2020 (FAO)
- 9-10 L of CW per kg of cheese produced
- CW organic load: 50-100 g COD/L

Environmental issue
- Eutrophication in waterbodies
- Toxicity to aquatic animals
- Decrease in crop yield

Huge opportunity to recover:
- Bioenergy
- Bioproducts

Management strategies

Past
- Fertiliser
- Animal feed
- Disposed

Present & Future

Extraction/separation processes
- Proteins
- VFA

Anaerobic digestion
- CH₄-rich gas

Fermentative processes
- H₂-rich gas
- PHA
- EE

BBCircle project – Cheese whey as substrate
Materials and method – Life Cycle Assessment

Goal & scope definition:
- Evaluation of the sub-processes contribution
- Comparison of two alternative processes

Environmental evaluation of innovative biorefinery process
Goal & scope definition

Functional Unit: 1 t CW

10th International Conference on Sustainable Solid Waste Management

Environmental evaluation of innovative biorefinery process

Avoided H₂

Cheese Whey

Dark Fermentation

H₂

CO₂ REMOVAL

CO₂/H₂

Fermentate

Hydrochar

HTC

Lignite substitution in power plants

Avoided H₂

Cheese Whey

Enhanced Bio-Electrochemical Dark Fermentation

H₂

CO₂ REMOVAL

CO₂/H₂

Fermentate

Hydrochar

HTC

Lignite substitution in power plants

Environmental evaluation of innovative biorefinery process

Environmental evaluation of innovative biorefinery process
Goal & scope definition

Integrated Bio-Electrochemical System (IBES)

- Biogas yield: 3.6 kg/t CW
- Biogas composition (%vol.): 60 H₂-40 CO₂
- H₂ yield: 2.69 NL/kg CW
- Fermentate: 1.1 t/t CW
- EE prodotta: 0.08 kWh/t CW

Stand-alone dark fermentation

- Biogas yield: 13.5 kg/t CW
- Biogas composition (%vol.): 50 H₂-50 CO₂
- H₂ yield: 6.57 NL/kg CW
- Fermentate: 1.3 t/t CW

- Additional electrochemical generation of H₂
- EE generation
- No need to add buffering agent (NaOH) continuously
- Consumption and replacement of zinc electrode
- Depletion of anode solution (ZnSO₄) and need to treat and replacement

- Higher biogas yield
- Higher H₂ yield
- Need to add buffering agent (NaOH) continuously

Substitution interval: once a day – once a year

Adapted from: De Gioannis et al., 2021

Environmental evaluation of innovative biorefinery process
Environmental evaluation of innovative biorefinery process
Environmental evaluation of innovative biorefinery process
Results and discussion – Impact Assessment (CC)

Environmental evaluation of innovative biorefinery process
Results and discussion – Impact Assessment (CC)

<table>
<thead>
<tr>
<th>DARK FERMENTATION</th>
<th>kg CO2 eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE</td>
<td>0.130768</td>
</tr>
<tr>
<td>TE</td>
<td>7.137116</td>
</tr>
<tr>
<td>NaOH</td>
<td>14.58</td>
</tr>
<tr>
<td>Water</td>
<td>9.7E-05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HTC</th>
<th>kg CO2 eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW</td>
<td>1.250339</td>
</tr>
<tr>
<td>HTC REACTOR</td>
<td>2.585074</td>
</tr>
<tr>
<td>CENTRIFUGATION</td>
<td>0.314037</td>
</tr>
<tr>
<td>DRYING</td>
<td>0.366746</td>
</tr>
<tr>
<td>PELLETTIZING</td>
<td>0.83597</td>
</tr>
<tr>
<td>LIGNITE SUBSTITUTION</td>
<td>-7.6048</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO2 SEPARATION</th>
<th>kg CO2 eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE</td>
<td>0.199524</td>
</tr>
<tr>
<td>TE</td>
<td>0.334882</td>
</tr>
<tr>
<td>Avoided H2</td>
<td>-0.95765</td>
</tr>
</tbody>
</table>

Environmental evaluation of innovative biorefinery process
Results and discussion – Impact Assessment (CC)

<table>
<thead>
<tr>
<th>IBES</th>
<th>kg CO2 eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substitution</td>
<td>once a year</td>
</tr>
<tr>
<td>EE</td>
<td>1.29E-01</td>
</tr>
<tr>
<td>TE</td>
<td>7.10E+00</td>
</tr>
<tr>
<td>NaOH</td>
<td>4.89E+00</td>
</tr>
<tr>
<td>Zn</td>
<td>8.65E-01</td>
</tr>
<tr>
<td>EE produced</td>
<td>-3.38E-02</td>
</tr>
<tr>
<td>Anodic solution to WWTP</td>
<td>1.81E-03</td>
</tr>
<tr>
<td>ZnSO4</td>
<td>2.93E-01</td>
</tr>
<tr>
<td>Water</td>
<td>1.68E-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HTC</th>
<th>kg CO2 eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW</td>
<td>1.314386</td>
</tr>
<tr>
<td>HTC REACTOR</td>
<td>3.034049</td>
</tr>
<tr>
<td>CENTRIFUGATION</td>
<td>0.371434</td>
</tr>
<tr>
<td>DRYING</td>
<td>0.434188</td>
</tr>
<tr>
<td>PELLETTISING</td>
<td>0.989699</td>
</tr>
<tr>
<td>LIGNITE SUBSTITUTION</td>
<td>-9.05924</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO2 SEPARATION</th>
<th>kg CO2 eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE</td>
<td>0.052518</td>
</tr>
<tr>
<td>TE</td>
<td>0.088146</td>
</tr>
<tr>
<td>Avoided H2</td>
<td>-0.39146</td>
</tr>
</tbody>
</table>

Environmental evaluation of innovative biorefinery process
Conclusions

- Introducing the IBES process in place of DF reduces a lot the impact of NaOH use.
- But uncertainty remains on the degradation of the ZnSO₄ solution.
- To be competitive the ZnSO₄ solution should last at least 12 days.
- Environmental credits are not able to balance the consumptions impacts of biorefinery system.
- The main environmental credits come from hydrochar use.
- Biorefinery results are promising: further aspects need to be investigated and further efforts must be invested in the experimental verification → LCA can support this process.
- Other processes and other substrates are under investigation.

Life-cycle thinking

SUSTAINABLE CIRCULAR ECONOMY
Thank You!

Lidia Lombardi
Niccolò Cusano University
Rome, Italy

lidia.lombardi@unicusano.it
10th International Conference on Sustainable Solid Waste Management

Results and discussion – Impact Assessment (CC)

LCIA method: Environmental Footprint

Climate change (kg CO2 eq/t CW)

Environmental life cycle assessment of polyhydroxyalkanoates production from cheese whey

Fabiano Asmus,1 Giorgia De Giusti,2,3 Giovanni Francini,1 Lidia Lombardi,1 Aldo Muntoni1, Alessandra Polentini1, Raffaella Pomi1, Andrea Poni1, Daniela Spiga1

1 Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Via Roma 2, 09123 Cagliari, Italy
2 CNR – CIR, Institute of Geological, Archeological and Environmental Geosciences, Cagliari National Research Council, Piazzale Europa, 09124 Cagliari, Italy
3 Department of Civil and Environmental Engineering, University of Florence, Via Santa Marta 3, 50139 Florence, Italy
4 Faculty of Engineering, University of Rome “La Sapienza”, Via Eudossiana 18, 00184 Rome, Italy
5 Department of Civil and Environmental Engineering, University of Rome “La Sapienza”, Via Eudossiana 18, 00184 Rome, Italy

Biorefinery scenario - DF

Biorefinery scenario - IBES

AD scenario

-3.57

Environmental evaluation of innovative biorefinery process