Assessing the feasibility and sustainability of surfactin bioprocesses: a techno-economic and environmental analysis

C. Treinen¹, **J.A. Poveda-Giraldo²**, J.C. Solarte-Toro², D.L. Restrepo-Serna², P. Noll¹, M. Henkel¹, R. Hausmann³, C.A. Cardona Alzate²

¹Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Germany ²Institute of Biotechnology and Agribusiness, Department of Chemical Engineering, Universidad Nacional de Colombia sede Manizales, Colombia ³Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Germany

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MANIZALES

Technische Universität München

Introduction

Surfactant market

- 1. Soaps, carboxylates, lignosulfonates, 33%
 - Domestic soaps
 - Acids for industrial use
- 2. Synthetic detergents (sulfonate), 22%
 - Domestic use (solid and liquid)
 - Oil industry
 - Additive
 - Pharmaceutical use
- 3. Nonionic (ethoxylated or ethoxysulfates), 40%
- 4. Cationic (quaternary ammoniums), 5%

Oil-based process

Biotechnological pathways

Alternative solution for environmental mitigation

Introduction

Bacillus spp.

PGPR = Plant Growth Promoting Rhizobacteria Production of lipopeptides

 \rightarrow surfactin, fengycin and iturin

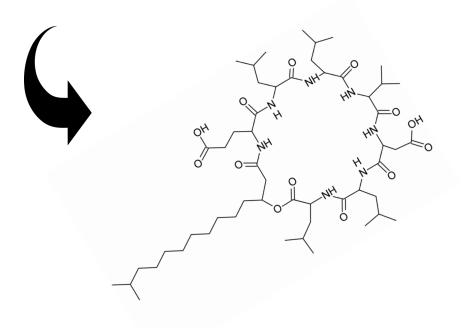


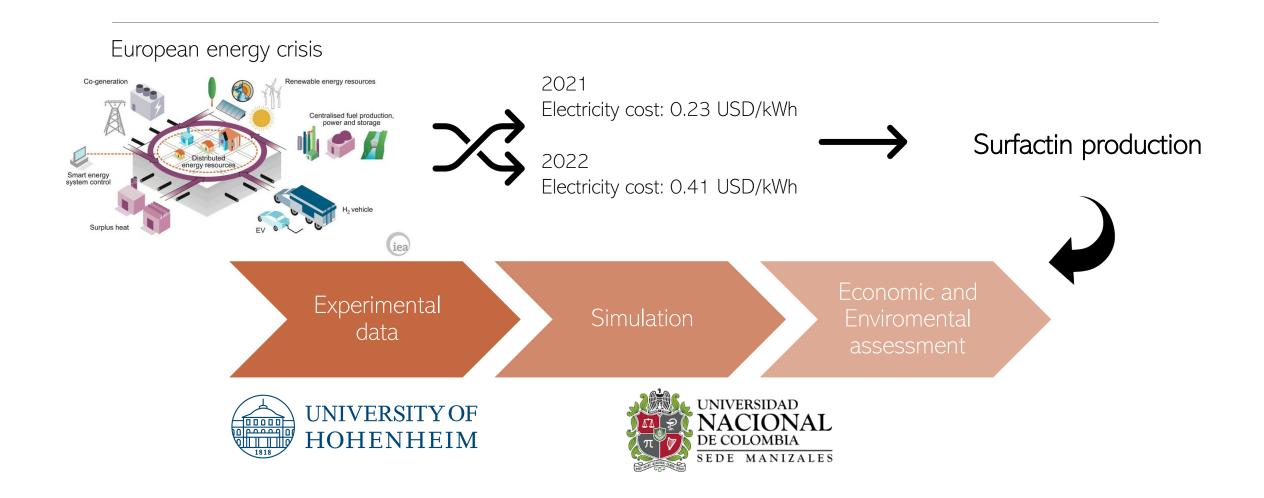
Fig1 Structure of surfactin (cyclic lipopeptide)

Properties and application possibilities of

surfactants

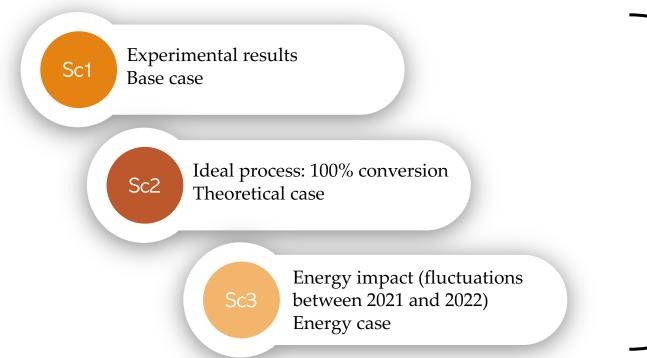
Antifungal activity

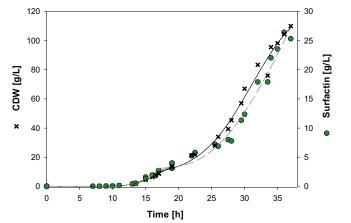
Food preservative

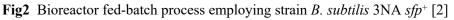


- Potential applications of biosurfactants/spores in the bioeconomic framework:
- Emulsifier (food sector)
- Ingredient for personal care product (cosmetic sector)
- Household detergent
- Microbial plant protection (Bacillus spp. spores; agricultural sector)

Problem statement




Methodology


Experimental results: Laboratory of Bioprocess Engineering of the University of Hohenheim

Simulation and analysis: Institute of Biotechnology and Agribusiness, Universidad Nacional de Colombia sede Manizales

Surfactin production using glucose as carbon source

- ✓ Glucose flow rate: 298.16 kg h⁻¹
- ✓ Thermodynamic properties:
 - o NRTL -> Liquid phase
 - o Redlich-Kwong (RK) -> Gas phase
- \checkmark Continuous operation based on the residence time of each unit

[2] Klausmann, P., Hennemann, K., Hoffmann, M., Treinen, C., Aschern, M., Lilge, L., Morabbi Heravi, K., Henkel, M. & Hausmann, R. (2021). Appl Microb Biotech, 105(10), 4141-4151.

Methodology Economic and environmental assessment

Operating costs (OpEx): Involve the cost of raw materials, utilities and labor. Labor costs: Operator 13.47 USD/h (six operators) Useful life of the plant 20 years Depreciation method: Linear Salvage value: 15%.

Fluctuation between 2021 and 2022

- Interest rate: 2%
- Raw material cost change 4.3%

• Utility cost change:

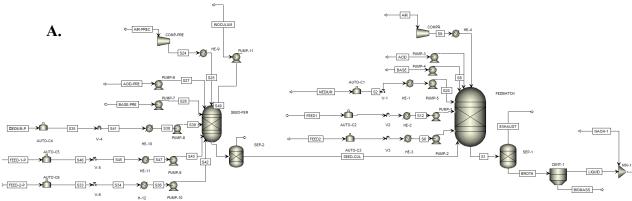
o Steam: 34.5%

- o Cooling water: 4.5%
- o Electricity: 78.3%
- o Refrigerant: 1.5%

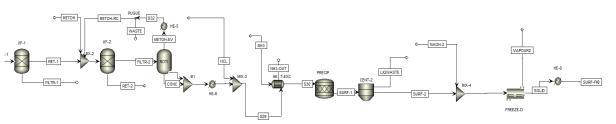
Environmental analysis

Objective: To compare the environmental impact of surfactin (2021 and 2022) Functional unit: 1 kg of surfactin Scope: gate-to-gate Analysis type: attributional Indicators to evaluate: Recipe midPoint (e.g. Climate change).

Life cycle assessment (LCA)



Results Techno-energetic assessment


- ✓ Surfactin production: 36% of theorical (Sc2)
- ✓ No significant difference in the processing water
- ✓ Low-pressure steam: increase of 50% compared with Sc2

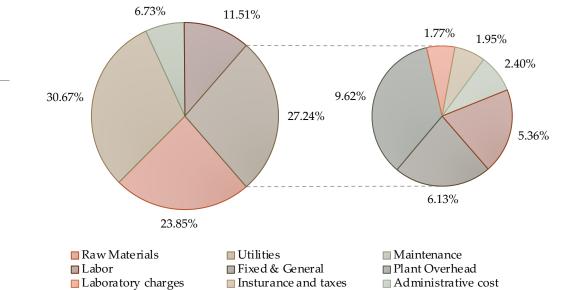
Parameter	Scenarios		
Farameter	Sc1	Sc2	Sc3
Overall yield (kg/100 kg feedstock)	11.7	32.4	11.7
Processing water demand (m ³ /day)		49.8	
Demand of low-pressure steam (kg/kg MP)	1.42	2.12	1.42
Demand of medium-pressure steam (ton/kg MP)		0.07	
Demand of cooling water (m ³ /kg MP)	0.85	0.97	0.85

Table 1. Summary of the overall mass and energy balances

В.

Fig3. Process diagram of surfactin production consisting of (A) conditioning and fermentation, and (B) downstream processing.

Results Economic assessment


Analysis for the base case (Sc1)

- ✓ CapEx: 29% freeze-drying technology
- \checkmark OpEx: 85% for the refrigerant (ammonia) in the freeze-drying
- ✓ Feasibility in less than one year of processing (NPV>0) because the high market price of surfactin (615 USD/kg)
- ✓ Feasibility: 35.2% of theorical

Table 2. Economic parameters for the surfactin production

Deremeter	Escenario			
Parameter	Sc1	Sc2	Sc3	
CapEx (M-USD)	6.63	6.67	6.63	
OpEx (M-USD/year)	5.82	8.62	8.50	
Production cost (USD/kg)	25.99	10.8	29.33	
NPV in 20 años (M-USD)	2474.2	7028.81	1408.14	
MPSEF (kg/day)*	88.7	12.1	140.8	

*MPSEF: Minimum processing scale for economic feasibility

Fig4. Distribution cost for the base case scenario.

Comparison between scenarios				
✓ ✓	CapEx: slight increase with the ideal case (Sc2) of 0.6% OpEx: 46% increase due to energy crisis (Sc1 and Sc3)			
	 Refrigerant: 35.2% Electricity: 59.1% 			
✓ ✓	Production cost increase of 12.9% (Sc1 and Sc3)			

Results Environmental assessment through LCA

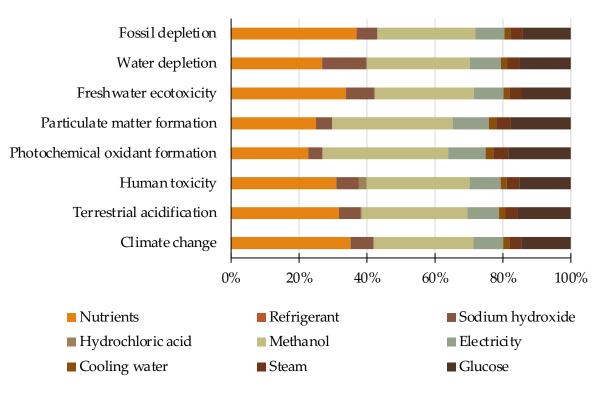


Fig5. Normalization of environmental impact categories for the base case scenario (Sc1)

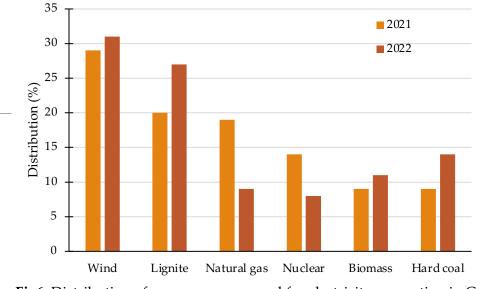


Fig6. Distribution of energy sources used for electricity generation in Germany.

Table 1. Comparison	of the total	environmental	impact betweer	1 2021 and	2022 scenarios

	l loit	Scer	Scenario	
Impact category	Unit	2021	2022	
Climate change	kg CO₂ eq kg⁻¹ FU	11.71	10.57	
Terrestrial acidification	kg SO ₂ eq kg ⁻¹ FU	0.05	0.04	
Human toxicity	kg 1,4-DB eq kg ⁻¹ FU	0.42	0.38	
Photochemical oxidant formation	kg NMVOC kg ⁻¹ FU	0.04	0.03	
Particulate matter formation	kg PM10 eq kg⁻¹ FU	0.03	0.02	
Freshwater ecotoxicity	kg 1,4-DB eq kg ⁻¹ FU	0.17	0.15	
Water depletion	m³ kg⁻¹ FU	0.18	0.16	
Fossil depletion	kg oil eq kg ⁻¹ FU	3.05	2.76	

Conclusions

- ✓ The energy crisis in Europe drastically affected the performance of surfactin production, decreasing the gross income by 43%. However, there was environmental mitigation due to the shortage of natural gas, reducing the environmental impact by 9.7%.
- ✓ The economic viability of surfactin production depends on the economic variations of the country as a result of the social and political dynamics of the European Union and its suppliers.

Acknowledgments

de la Investigación, Extensión y Laboratorios

Assessing the feasibility and sustainability of surfactin bioprocesses: a techno-economic and environmental analysis

Thank you

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MANIZALES