CHANIA 2023

Strain resolved metagenomics applied to biogas upgrading

Gabriele Ghiotto 21/06/23

Agenda

02. Methods

03. Results

04. Take home message

Biogas Upgrading (BU)

- Raw biogas consists of 50-70% of CH₄ and 30-50% of CO₂
- ▶ **BU** is used to consume the residual CO_2 , producing biomethane (≥95% CH_4)
- Biological fixation of CO₂ with the use of external H₂ can follow different metabolic routes:
 - Hydrogenotrophic methanogenesis
 - Acetoclastic methanogenesis
- Microbiome involved has been already deciphered at the species level (Campanaro et al 2016)

Why strain-level?

- Microbes are characterized by high genetic heterogeneity
- Differences in gene content are important for understanding microbial evolution, adaptation, and the gain of specific metabolic functions.
- Strain-level analysis allows a higher resolution

Selective pressure shapes microbiomes

- Performances and stability of the process are linked with the **fitness** of the microbiome
- A selective pressure is capable of shaping the microbial community
- Genomic variants fixed through time give a phenotypic advantage
- Strain selection can occur

Strain-resolved metagenomics

- > Old strategy:
 - ➤ isolation
 - phenotypic analysis
- Metagenomics offers new opportunities
- > New strategy:
 - variant analysis
 - strain deconvolution
- Extremely challenging to study

Bioinformatic workflow

Metagenomics

- Shotgun sequencing
- Assembly and binning
- Phylogenetic analysis
- Gene annotation

7

Analysis of variants

- Variant calling (InStrain) on MAGs
- Quality filtering
- Clustering based on frequency
- Map variants on genes

Strain deconvolution

- Retrieve number of strains (STRONG)
- Calculate the strain's abundance
- Link variants to strains

Case study 1

Carbon substrates

Experimental design

- Inoculum coming from TBR reactor
- Batch framework
- Three carbon sources:
 - > 90% acetate + 10% H_2CO_2
 - ▶ 100% H₂CO₂
 - > 50% acetate + 50% H_2CO_2
- Sequential reinocula (G0, G1, G2)

Variant selection determined by the shift in carbon substrates availability

➢ Reactors:

- ➤ A 90% Ac + 10% H2CO2
- ➢ B 100% H2CO2
- ➤ C 50% Ac + 50% H2CO2
- Strain replacement between
 G1 and G2_TP1 for *M. wolfeii*
- No change between substrates
- ~6% of these were affecting genes involved in hydrogenotrophic methanogenesis

Case study 2

Exogenous H₂ addition

Experimental design

- > CSTR reactor in triplicate
- Acetate as initial substrate
- \succ H₂ addition at constant flow
- > Three sampling point
 - > 18 hours before
 - ➢ 18 hours after
 - ➢ 36 days after

Variants selection in CSTRs upon exogenous H_2 addition

- A strain replacement was highlighted after the H₂ addition in *M. thermophilus*
- On average 139 SNVs were positively selected in the new strain (blue)
- ~12% of these were affecting genes involved in hydrogenotrophic methanogenesis

Legend • Case study #1 • Case study #2

Map SNVs to genes

 \geq

Summary

Circular economy concept

Reduce carbon footprint through BU optimization

Novel approach for strain level analysis

Combine SNVs and strain deconvolution

Selective pressures trigger strain-level dynamics

Track strains through time and follow their evolution

Insight in the role of SNVs

SNVs promote adaptation of microbes to environmental changes

CHANIA 2023

Thank you

You can follow our progress on ...

bioinf.omics.unipd Genomics&Bioinformatics UniPD Impresa locale genomics.cribi.unipd.it/main

