

CHANIA 2023

10th International Conference on Sustainable Solid Waste Management Chania, Greece, 21 - 24 JUNE 2023

Comparative assessment of different packing materials in biological methanation

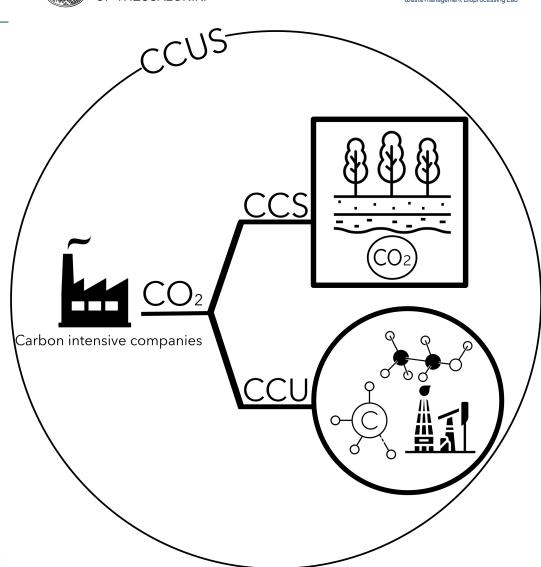
A. Chatzis^{*1, 2}, M. Gaspari¹, K.N. Kontogiannopoulos¹, A.I. Zouboulis², P.G. Kougias¹

¹Institute of Soil & Water Resources, Hellenic Agricultural Organization ELGO-Dimitra, Thermi, Thessaloniki, Greece ²Laboratory of Chemical & Environmental Technology, Dept. of Chemistry, Aristotle University of Thessaloniki, Greece

Carbon Capture Utilization & Storage

- Carbon dioxide released into the atmosphere \rightarrow Global warming

Main contributors for the CO₂ emissions:

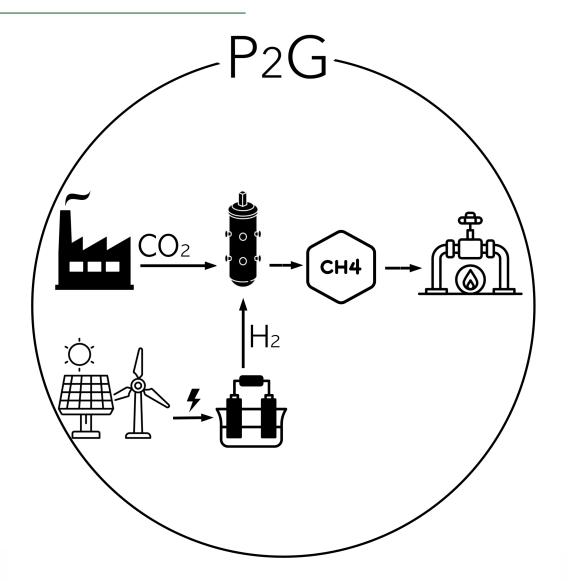

- Fossil fuel combustion
- Deforestation

The trend of atmospheric CO₂ emissions is on the rise

Main mitigation strategies:

- Carbon Capture and Storage (CCS)
- Carbon Capture and Utilization (CCU)

Part of Power to Gas technology


Power-to-Gas (P2G) combines:

- Hydrogen production through PEM electrolysis exploiting the surplus renewable energy (e.g., wind, solar energy etc.)
- Methanation, where the produced H₂ reacts with CO₂ to yield CH₄

Methanation can be accomplished:

- Thermo-catalytically (Sabatier process)
- Biologically

Both processes share the same reaction: $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O \ \Delta G^o = -130.7 \text{ kJ/mol}$

Biological Methanation

Carried out by Hydrogenotrophic Methanogens:

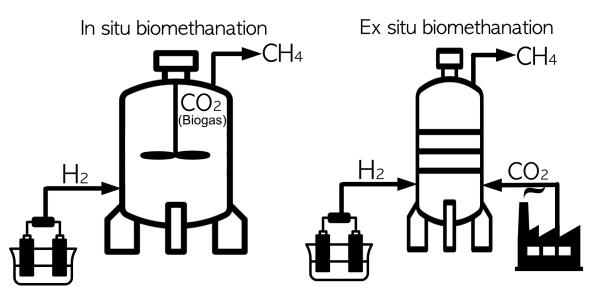
- Utilize H₂ as an electron donor
- Reduce CO₂ to CH₄

Influenced by several operating factors:

Temperature:

Thermophilic systems exhibit higher production rates

• pH:

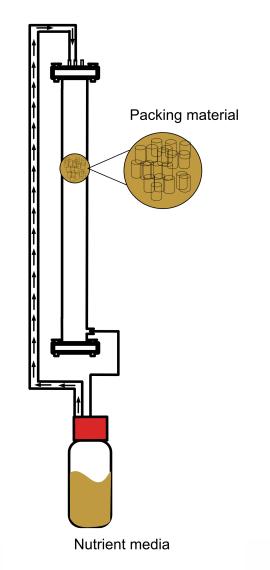

7-8 (optimum range)

• Mass transfer of H₂:

The main obstacle to be tackled

Can be accomplished:

- In-situ or
- Ex-situ



Packing Materials in Biological Methanation

- Low H₂ mass transfer → limited H₂ conversion resulting in the accumulation of <u>Volatile Fatty Acids</u>
- Trickle bed reactor (TBR) the most promising technology for biomethanation, where <u>hydrogenotrophic methanogens</u> are immobilized onto a packing material
- By <u>immobilizing the microbial cells</u>, it is possible to increase the efficiency of substrate conversion and to shorten the necessary retention times

Optimal characteristics :

- 1. High surface area
- 2. Non-toxic
- 3. Reusable and cheap

7/5/23 | Slide 6

Aim & Objectives

<u>The selection of appropriate packing material for the immobilization of biofilm – comparison among three different packing materials:</u>

- Raschig rings (0.01 m²/g)
- Activated carbon (20 m²/g)
- Biochar (10.5 m²/g)

Comparative evaluation of the three packing materials, in terms of:

- Process efficiency:
 - output gas composition
 - average H₂/CO₂ utilization
- pH
- Volatile Fatty Acids (VFA)

Materials and Methods

Experimental procedure

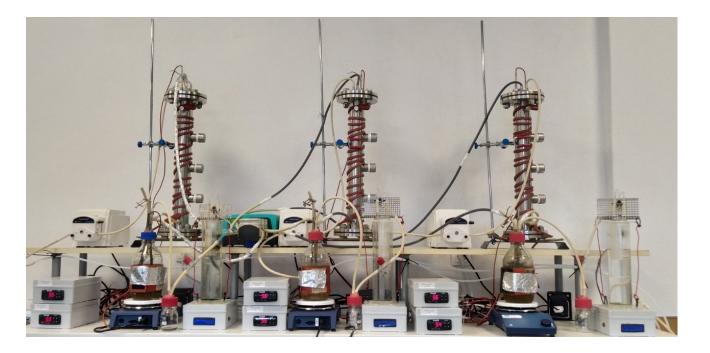
<u>Three custom-made TBRs, made of stainless steel were</u> installed, with:

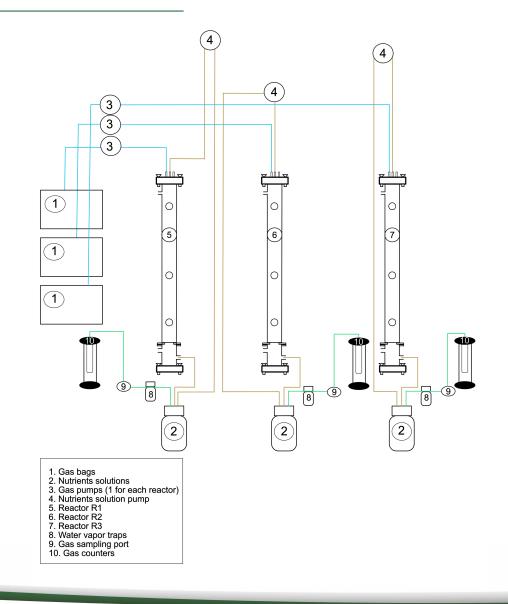
- 1-liter working volume
- 10:1 Height: Diameter ratio

TBRs were tested in five different Gas Retention Times: 4 h, 3 h, 2 h,

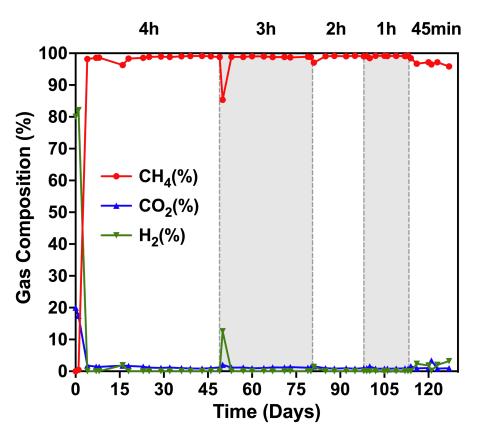
1 h, and 45 min in terms of:

- Output gas composition determination (% CH₄, CO₂, H₂)
- VFA concentration determination (VFA, mg/L)
- pH measurement
- Produced output gas quantitative evaluation (mL)




Materials and Methods

Experimental setup

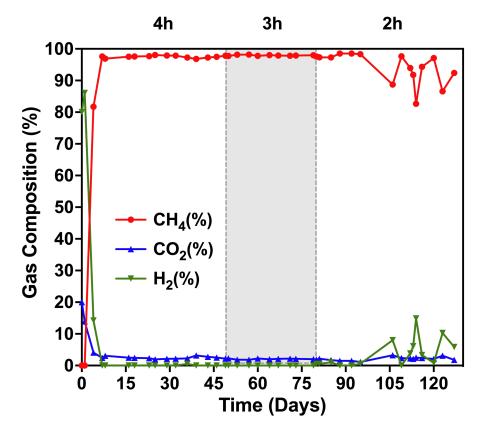


Output gas composition of TBR1 (Raschig rings)

- Quick adaptation (4 days) for the microbial community applying 4 h GRT
- A drop during the 1st day of 3 h GRT, consistent with other similar research
- Stable CH₄ production for all GRTs examined
- CH₄ composition higher than 98% in 4, 3, 2, 1 h GRT
- CH₄ composition higher than 95% in 45 min GRT

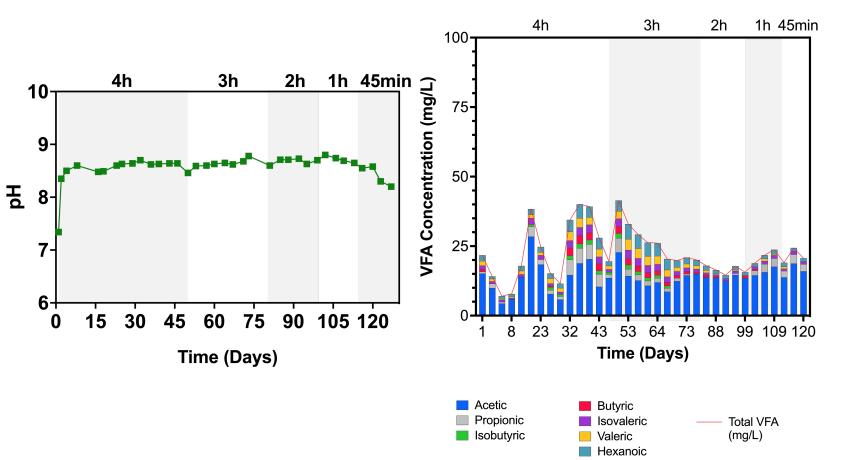
Output gas composition of TBR2 (Activated carbon)

- Quick adaptation (4 days) for the microbial community, applying 4 h GRT
- No decline in the process efficiency after the reduction from 4 to 3 and to 2 h GRT
- Increased CH₄ composition for 2 h GRT (>98%)
- A drop in the 1st day of 1 h GRT, consistent with other similar research
- Relatively unstable operation during 1 h GRT



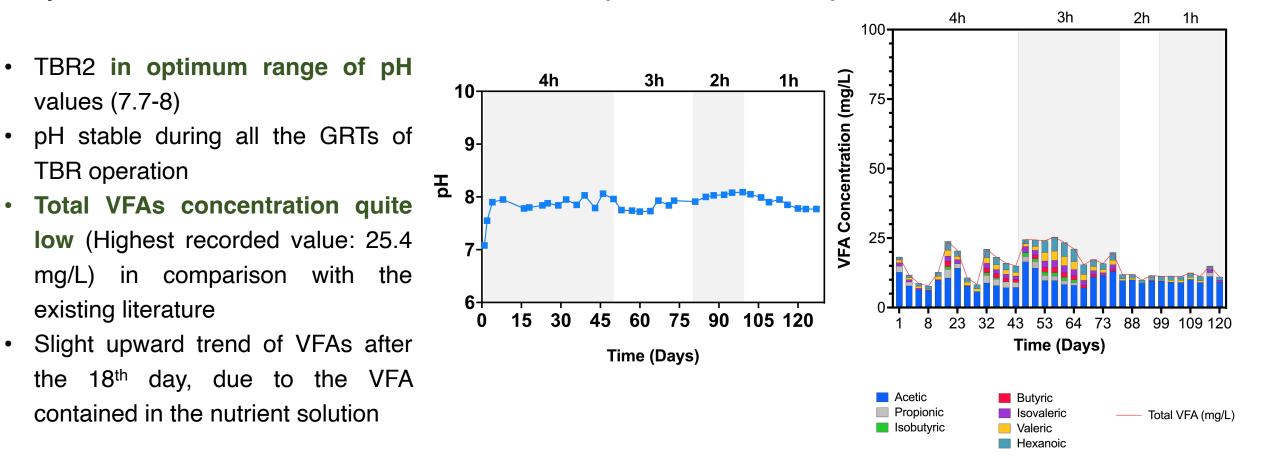
Output gas composition of TBR3 (Biochar)

- Necessary adaptation time: 4 h GRT (7 days)
- No decline in the process efficiency after the shift from 4 to 3 h GRT
- Increased CH₄ composition, by using 3 h GRT (>98%)
- Restart of the operation during the application of 2 h GRT


Results and Discussion

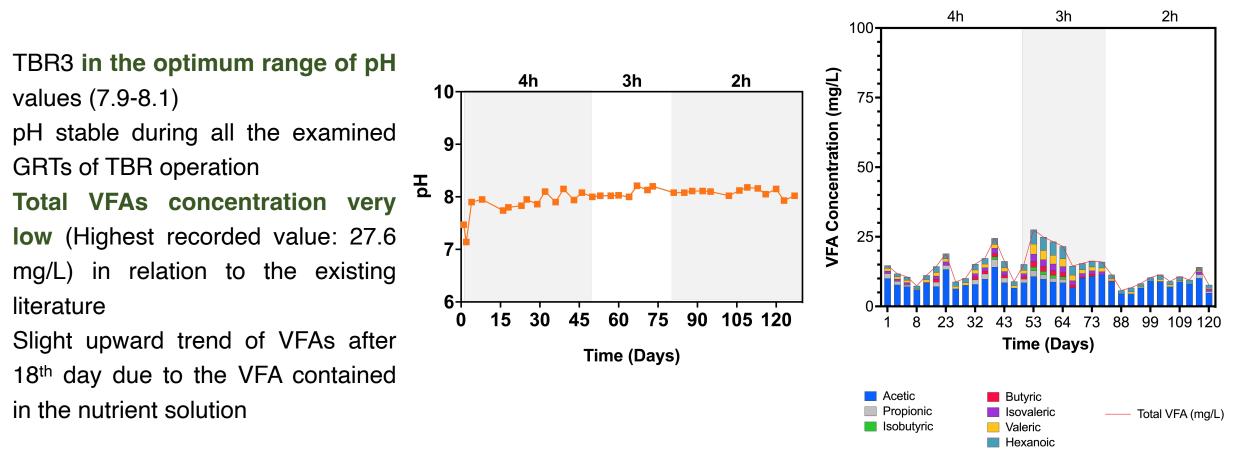
pH values and VFA concentrations of TBR1 (Raschig rings)

- TBR1 slightly out of the optimum range of pH values (8.5-8.6), consistent with other similar research
- pH stable during all the examined GRTs of TBR operation
- Total VFAs concentration quite low (Highest recorded value: 41.4 mg/L) in relation to the existing literature
- Slight upward trend of VFAs after the 18th day, due to the VFA contained in the nutrient/feed solution



Results and Discussion

pH values and VFA concentrations of TBR2 (Activated Carbon)



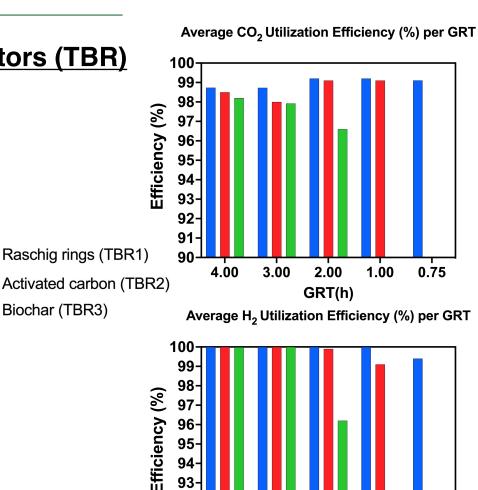
Results and Discussion

pH values and VFA concentrations of TBR3 (Biochar)

٠

٠

٠


7/5/23 | Slide 15

Average CO₂/H₂ utilization efficiency (%) of Trickle Bed Reactors (TBR)

- High H_2 utilization efficiency (100%), when applying 4 and 3 h GRT for all the three examined TBRs
- A sharp drop for the case of biochar and for 2 h GRT (96.2%), unstable operation of TBR2
- Lower H₂ utilization efficiency for the case of activated carbon and for 1 h GRT
- High CO₂ utilization efficiency (over 98%), when applying 4 and 3 h GRT for all the examined three TBRs
- A sharp drop for the case of biochar by using 2 h GRT (96.6%), unstable operation of TBR2
- High CO₂ utilization efficiency for the case of Raschig rings even for 45 min GRT (99%)

93-

2.00

GRT(h)

1.00

0.75

3.00

4.00

Conclusions

- Raschig ring found as more suitable packing material, than activated carbon and biochar
- Raschig rings achieved:
 - Output CH₄ composition in TBR1 higher than 98% for GRT 4, 3, 2 and 1 h
 - Satisfactory and stable pH values for the operation, although slightly higher than the optimal range
 - Low VFA concentrations (lower than 50mg/L)
- Comparing GRT 2 h \rightarrow **Distinction between biochar-Raschig rings performance**
- Comparing GRT 1 h \rightarrow **Distinction between activated carbon-Raschig rings performance**
- Biochar needs further investigation for lower GRT values

The "Demonstration of a mobile unit for hybrid energy storage based on CO_2 capture and renewable energy sources (LIFE CO_2 toCH₄ - LIFE 20/CCM/GR/001642)" project has received funding from the LIFE Programme of the European Union.

Thank you for your attention!

CHANIA 2023

10th International Conference on Sustainable Solid Waste Management Chania, Greece, 21 - 24 JUNE 2023

Comparative assessment of different packing materials in biological methanation

A. Chatzis^{*1, 2}, M. Gaspari¹, K.N. Kontogiannopoulos¹, A.I. Zouboulis², P.G. Kougias¹

1. Institute of Soil & Water Resources, Hellenic Agricultural Organization ELGO-Dimitra, Thermi, Thessaloniki, Greece 2. Laboratory of Chemical & Environmental Technology, Dept. of Chemistry, Aristotle University of Thessaloniki, Greece

