

10th International Conference

on

Sustainable Solid Waste Management 21 – 24 June, Chania, Crete, Greece

Application of Sewage Sludge Derived Hydrochar as an Adsorbent for Removal of Methylene Blue

Diwakar Kumar Singh, Anurag Garg

Environmental Science and Engineering Department

Indian Institute of Technology Bombay, India

Outline

Introduction

Methodology

Results and Discussion

Conclusions

References

Introduction

- It is estimated that India would produce ~3955 thousand metric tonnes dry sewage sludge, annually (Singh et al., 2020)
- SS generated during wastewater treatment is a huge management problem and responsible for 60% of the total wastewater treatment plant (WWTP) operational cost (Pilli et al., 2015)
- Common sludge disposal techniques in India are landfilling of centrifuged SS and anaerobic digestion (AD)
- Microbiological degradation of sludge to CH₄ and CO₂ by AD is a slow process and requires high retention time and larger digester volume (García-Cascallana et al., 2021)
- Hydrothermal pretreatment (HPT) is an emerging process due to its potential for enhancing resources recovery options from the SS (Barber, 2016; Malhotra and Garg, 2019)
- The hydrochar (HC), a hydrothermally carbonized product, has attracted significant attention in recent years due to its potential applications in various fields including agriculture, energy, and environmental remediation
- One of the simplest ways for HC recycling is in the form of adsorbent within the same or other WWTP
- In the present study, the HC samples recovered after HPTs (thermal hydrolysis and hydrothermal carbonization) of SS and centrifuged sewage sludge (CSS) were tested as an adsorbent

Methodology (1/2)

Solids fraction of SS after thermal hydrolysis at 160°C for 0.5 h (HC_160_0.5) and 160°C for 1 h (HC_160_1). Solid fraction of CSS after HTC at 200°C for 3 h (HC_200_3) and modified HC_200_3 by 2M KOH (HC_200_3_KOH)

Schematic and pictorial view of the TH reactor

Schematic and pictorial view of the HTC reactor

Methodology (2/2)

Methylene blue removal (Dose = 1 g/L, time = 24 h, pH = 3.24-7, Concentration = 50-500 mg/L, temp = 30°C, Shaker speed = 100 rpm)

Kinetic and thermodynamic studies

Hydrochar (a) HC_160_0.5, (b) HC_160_1, (c) HC_200_3, (d) HC_200_3_KOH

Results and Discussion: Characterisations (1/6)

Proximate and ultimate analysis of SS, CSS and HC samples

Parameters	SS	CSS	HC_160_0. 5	HC_160_1	HC_200_3	HC_200_3_KOH		
Total solids (w/w)	2.1±.01	10.5 ±1.7	-	-	-	-		
Volatile solids (w/w)	57.3±0.03	61±0.19	51.2±0.28	52.5±0.2	47.7±0.78	-		
Fixed carbon (w/w)	3±0.3	4±0.8	5.2±0.09	5.4±0.13	5.2±0.15	-		
Ultimate analysis on dry basis								
C (%)	26.7	32.1	26.2	28.1	28.6	24.5		
H (%)	4.75	3.4	3.5	3.8	3.2	3.1		
N (%)	1.95	5.6	2.57	2.99	1.86	1.68		
S (%)	0.39	0.64	0.7	0.6	0.53	0.7		
O (%)	26.6	22.9	18.46	17.48	13.81	23.16		
*Ash (w/w)	39.6	35.3±0.2	43.6±0.71	42±0.58	47±0.4	48±0.6		
HHV (MJ/kg)	13.6	13.3			13.8	-		
*Ash = 100 – (C+H+N+S+O)								

Results and Discussion: Characterisations (2/6)

SEM images of sludge and HC samples: (a) SS, (b) HC_160_0.5, FTIR spectra of HC and chemically modified HC samples (c) HC_160_1, (d) CSS, (e) HC_200_3, and (f) HC_200_3_KOH

Results and Discussion: Adsorption Studies (3/6)

Results and Discussion: Adsorption Kinetics Studies (4/6)

		Pseudo first order model			Pseudo second order model		
Adsorbents	q _{e,ex} (mg/g)	q _e (mg/g)	k₁ (h⁻¹)	R ²	q _e (mg/g)	k ₂ (g*mg ⁻ ¹ h ⁻¹)	R ²
HC_160_1	192.36	133.8	0.103	0.91	200	0.44	0.98
HC_160_0.5	190	134.3	0.122	0.94	200	0.47	0.99
HC_200_3	178	24.5	0.267	0.65	178.6	11.2	1
HC_200_3_KOH	194	22.2	0.193	0.46	192.3	13	1

(initial MB concentration = 200 mg/L, pH = 7, adsorbent dose = 1 g/L, reaction time = 24 h, shaker speed = 100 rpm and temperature = 30° C)

Lagergern's pseudo-first order model

$$\log(q_e - q_t) = \log(q_e) - k_1 t$$

Lagergern's pseudo-second order models

$$\frac{t}{q_t} = \frac{1}{k_2 q_e} + \frac{1}{q_e} (t)$$

 $q_{e,ex}$ = Experimental adsorption capacity (mg/g) q_e = Calculated adsorption capacity (mg/g) q_t = Amount of adsorbent adsorbed at time t k_1 and k_2 are pseudo first order and second order model rate constant

Results and Discussion: Adsorption Isotherm Studies (5/6)

	Langmuir isotherm			Freundlich isotherm		
Adsorbents	q _{max} (m g/g)	K _L (L/mg)	R ²	K _f	n	R ²
HC_160_0.5	370	82	0.996	54	2.53	0.88
HC_160_1	370	84	0.998	53.9	2.5	0.83
HC_200_3	322	40	0.992	65.5	3.4	0.79
HC_200_3_KOH	454	95	0.981	66.2	2.3	0.75

(initial MB concentration = 200 mg/L, pH = 7, adsorbent dose = 1 g/L, reaction time = 24 h, shaker speed = 100 rpm and temperature = 30°C)

✤ Langmuir isotherm

$$q_e = \frac{q_{\max} K_L C_e}{1 + K_L C_e}$$

✤ Freundlich isotherm

$$q_e = k_f C_e^{1/n}$$

- q_e = equilibrium sorption concentration of solute per gram of adsorbent (mg/g)
- C_e = equilibrium concentration of solute (mg/L)
- q_{max} = maximum adsorption capacity (mg/g)
- K_L = Langmuir constant (L/mg)
- K_F and n = Freundlich constants

Results and Discussion: Adsorption Thermodynamic Studies (6/6)

for MB on HC samples

Thermodynamic parameters for MB adsorption

	ΔG°	ΔH°	ΔS°
Adsorbents	(kJ/mol)	(kJ/mol)	(J/molK)
HC_160_0.5	-11	7.7	62
	-11.7		
	-11.9		
HC_160_1	-11.3	4.7	53.3
	-11.8		
	-12.06		
HC_200_3	-10.7	11	72
	-11.4		
	-11.8		
HC_200_3_KOH	-12.1	15.2	90.3
	-13.1		
	-13.4		

 $\Delta G^{\circ} = -RT \ln K$ $\Delta G^{\circ} = \Delta H^{\circ} - T. \Delta S^{\circ}$ $\ln K = (\Delta S^{\circ}/R) - (\Delta H^{\circ}/RT)$

 ΔG° = Free energy change; ΔH° = Heat of adsorption ΔS° = Entropy change; R = Universal gas constant (8.314 J/mol.K) T = Temperature in kelvin; K = Equilibrium constant

Conclusions

- Hydrochar obtained from SS and CSS after HPT have MB removal efficiency of more than 90% and can be used for tertiary treatment of wastewater on the site itself
- Langmuir isotherm and pseudo-second-order kinetic models provided the best fit with the experimental equilibrium and kinetic data, respectively
- Thermodynamic analysis confirmed the feasibility of the adsorption process
- The utilisation of waste derived adsorbent will reduce the requirement of activated carbon from natural sources and lessen environmental impacts

Acknowledgements

- Prime Minister's Research Fellow (PMRF) scheme under Ministry of Education, New Delhi, India
- Department of Science and Technology (DST), New Delhi, India
- ESED, Indian Institute of Technology (IIT) Bombay faculty and staff
- ✤ SAIF, IIT Bombay
- Solid and liquid waste research laboratory group

Solid and liquid waste research laboratory group

References

Barber, W. P. F. (2016). Thermal hydrolysis for sewage treatment: a critical review. Water Research, 104, 53-71.

García-Cascallana, J., Gómez, X., & Martinez, E. J. (2021). Thermal Hydrolysis of Sewage Sludge: A Case Study of a WWTP in Burgos, Spain. Applied Sciences, 11(3), 964.

Malhotra, M., & Garg, A. (2019). Performance of non-catalytic thermal hydrolysis and wet oxidation for sewage sludge degradation under moderate operating conditions. Journal of environmental management, 238, 72-83.

Pilli, S., Yan, S., Tyagi, R. D., & Surampalli, R. Y. (2015). Thermal pretreatment of sewage sludge to enhance anaerobic digestion: a review. Critical Reviews in Environmental Science and Technology, 45(6), 669-702.

Singh, V., Phuleria, H. C., & Chandel, M. K. (2020). Estimation of energy recovery potential of sewage sludge in India: Waste to watt approach. Journal of Cleaner Production, 276, 122538.

Thank You

$$q_e = k_f C_e^{1/n}$$

The model is based on adsorption on heterogeneous surface and is a widely used isotherm. The Freundlich isotherm is derived by assuming that the sites on the adsorbent have different affinities for different adsorbates with each site.

 $q_{\rm e}$ = equilibrium sorption concentration of solute per gram of adsorbent (mg/g)

 C_e = equilibrium concentration of solute (mg/l)

 K_F and n = Freundlich constants

The Lagergern's pseudo-first order model and pseudo-second order models.

$$\log(q_{e} - q_{t}) = \log(q_{e}) - k_{1}t$$
$$\frac{t}{q_{t}} = \frac{1}{k_{2}q_{e}} + \frac{1}{q_{e}}(t)$$

 q_e and q_t = amount of adsorbent adsorbed at equilibrium and at time t (mg/g) k_1 and k_2 are pseudo first order and second order model rate constant, respectively.

 $q_e = \frac{q_{\max} K_L C_e}{1 + K_L C}$

Langmuir adsorption is valid for monolayer adsorption. The solid is assumed to have limited capacity (q_{max}) . All the adsorption sites (i) are assumed to be identical, (ii) each site can retain one molecule of the given compound

 q_{max} = maximum adsorption capacity (mg/g)

- K_L = Langmuir constant
- C_e = equilibrium concentration (mg/l)

$\Delta G^{\circ} = -RT \ln K$

Where R is the universal gas constant (8.314 J/(mol.K)), and T is the temperature in Kelvin.

 ΔG° is also related to the entropy change (ΔS°) and the heat of adsorption (ΔH°) according to the following equation 2.6. $\Delta G^{\circ} = \Delta H^{\circ} - T. \Delta S^{\circ}$

 $\ln K = (\Delta S^{\circ}/R) - (\Delta H^{\circ}/RT)$