

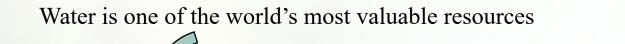
Natural zeolite for the wastewater treatment

Melodj Dosa, <u>Nadia Grifasi</u>, Camilla Galletti, Debora Fino and Marco Piumetti*

Department of Applied Science and Technology, Polytechnic of Turin, Turin, 10129, Italy.

20/06/2023- Chania

Table of content


Introduction

Physical-chemical characterization

Application:

- Removal of organic dyes
- Removal of heavy metals
- Kinetic study

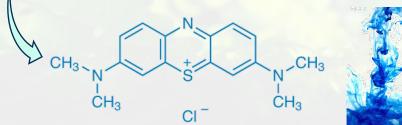
Conclusion

recycle and reuse treated wastewater for beneficial purposes

agricultural industrial processes

Wastewater treatment is essential to preserve public health and reduce levels of environmental degradation

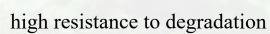
Industrial effluents \Rightarrow


main sources of water pollution

Synthetic organic dyes
Heavy metals

textile industry

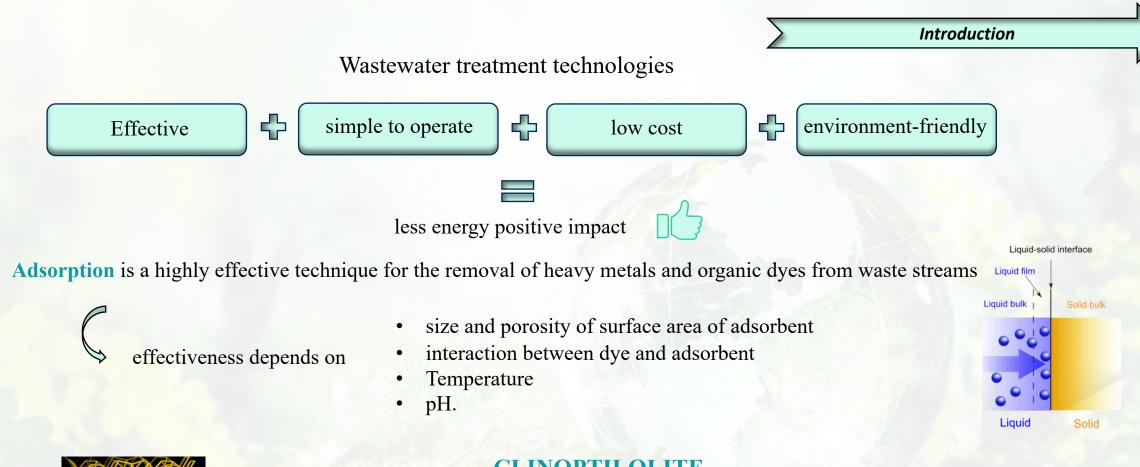
mechanical and metallurgical processes

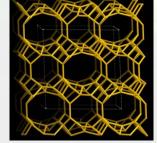


Methylene Blue as organic dye probe molecule

Zn and Cd as heavy metals probe molecules

considered **micropollutants** due to their low concentration (ng/l to µg/l) in aquatic ecosystems.


- high toxicity
- React with difficulty
- dangerous for human health


[1] Jhansi, S. C., & Mishra, S. K. (2013). Wastewater Treatment and Reuse: Sustainability Options. Consilience, 10, 1–15.

[2] Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. The Science of the total environment, 717, 137222.

[3] Dosa, M., Piumetti, M., Bensaid, S., Russo, N., Baglieri, O., Miglietta, F., & Fino, D. (2018). Properties of the Clinoptilolite: Characterization and Adsorption Tests with Methylene Blue.

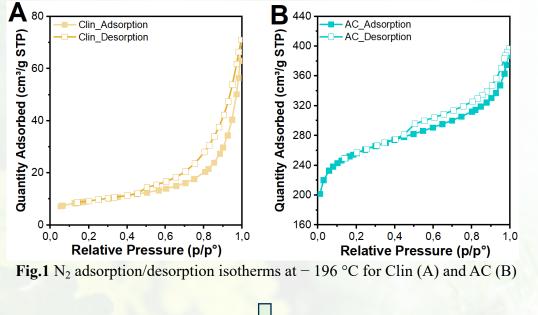
[4] Galletti, C., Dosa, M., Russo, N. et al. Zn²⁺ and Cd²⁺ removal from wastewater using clinoptilolite as adsorbent. Environ Sci Pollut Res 28, 24355–24361 (2021).

(NaKCa)₄(Al₆Si₃₀O₇₂)·24H₂O

CLINOPTILOLITE

- low cost and abudant natural zeolite
- found in basaltic and volcanic rocks
- interact with several compounds thanks to the presence of electrostatic forces into the cavities

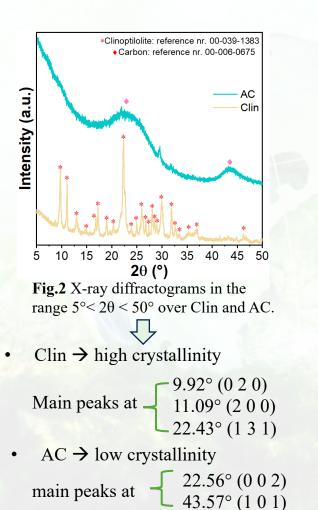
suitable material for several environmental applications

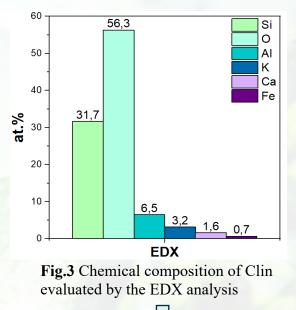

[2] Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. *The Science of the total environment*, 717, 137222.

[4]Galletti, C., Dosa, M., Russo, N. *et al.* Zn²⁺ and Cd²⁺ removal from wastewater using clinoptilolite as adsorbent. *Environ Sci Pollut Res* 28, 24355–24361 (2021).

[5] Diógenes, T. S., Santiago, R. G., Maia, D. A., Gonçalves, D. V., Azevedo, D. C., Lucena, S. M. P., & Bastos-Neto, M. (2022). Experimental and theoretical assessment of CO2 capture by adsorption on clinoptilolite. *Chemical Engineering Research and Design*, 177, 640-652.

^[1] Jhansi, S. C., & Mishra, S. K. (2013). Wastewater Treatment and Reuse: Sustainability Options. Consilience, 10, 1–15.

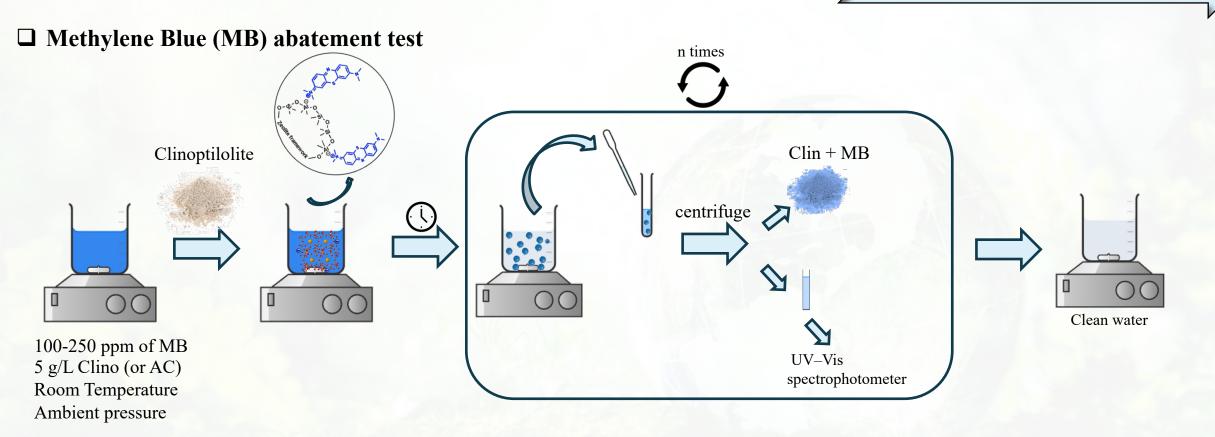

Adsorbent materials were characterized to describe their physical-chemical properties



 $\overline{\mathbf{v}}$

Table 1. Specific Surface Area (SSA), Total Pores Volume (V_{TP}), and Pores Diameter (D_P) of the Clin and AC samples

Adsorbent material	SSA (m ² g ⁻¹)	V _{TP} (cm ³ g ⁻¹)	D _p
			A channel 3.0 x 7.6 Å
Clin	32	0.12	B channel 3.3 x 4.6 Å
			C channel 2.6 x 4.7 $ m \AA$
AC	891	0.56	3.3 nm



• Si and Al \rightarrow main elements

• K, Ca and Fe \rightarrow minimum quantity

[6] Dosa, M.; Grifasi, N.; Galletti, C.; Fino, D.; Piumetti, M. Natural Zeolite Clinoptilolite Application in Wastewater Treatment: Methylene Blue, Zinc and Cadmium Abatement Tests and Kinetic Studies. *Materials* 2022, *15*, 8191.
 [7] Dosa, M., Piumetti, M., Davarpanah, E., Moncaglieri, G., Bensaid, S., Fino, D. (2021). Natural Zeolites as Sustainable Materials for Environmental Processes. In: Piumetti, M., Bensaid, S. (eds) Nanostructured Catalysts for Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-58934-9_13

Co-presence of Methylene blue and Heavy metals (Zn, Cd) abatement test

 $Cd(NO_3)_2 \cdot 4H_2O$ and $ZnSO_4 \cdot 7H_2O$ as metal source 250 ppm of MB, 10 ppm heavy metals, 10 g/L Clino (or AC) Zn²⁺ and Cd²⁺ \rightarrow Inductively Coupled Plasma-Mass Spectrometer (iCAP Q ICP-MS)

Adsorption tests

□ Methylene Blue adsorption results at different concentrations

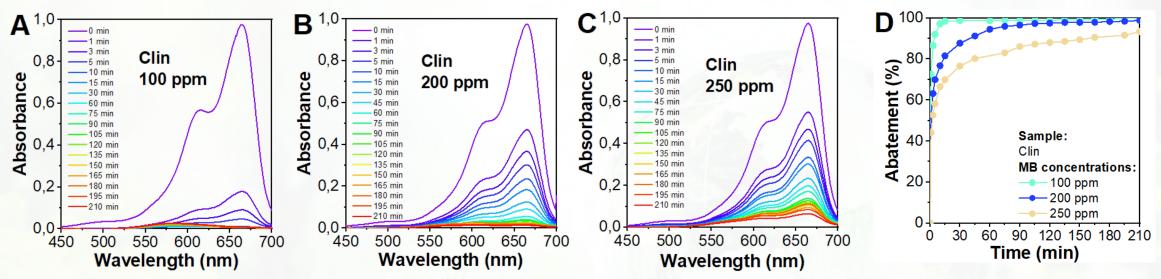


Fig.6 Clin (5 g/L) abatement tests performed with 100 ppm (A), 200 ppm (B), and 250 ppm (C) MB concentrations and MB abatement as a function of time (D)

✓ active adsorption sites on zeolite surface → silanol groups	after 210 min			
MB pKa = 3.80 \implies MB exists as a molecular cation in water @ pH > 4		100 ppm		
MB removal capacity \rightarrow electrostatic interaction between MB	200 ppm 250 ppm			
pH \prod repulsive interaction between the protonated group	ps (Si-OH $_2^+$) and cationic MB			

pH fr attractive interaction between the deprotonated groups (Si-O⁻) and cationic MB

1	Table 2. pH values at the beginning of MB abatement tests						
	Adsorbent Material	MB Concentration (ppm)	pH _{time=0 min}				
		100	8.36				
	Clin	200	8.01				
		250	6.18				

Additionally, MB adsorption could be performed by cationic exchange and coordination with the oxygen donor atoms of the zeolite surface.

[6] Dosa, M.; Grifasi, N.; Galletti, C.; Fino, D.; Piumetti, M. Natural Zeolite Clinoptilolite Application in Wastewater Treatment: Methylene Blue, Zinc and Cadmium Abatement Tests and Kinetic Studies. *Materials* 2022, *15*, 8191.
 [8] Picón, D.; Vergara-Rubio, A.; Estevez-Areco, S.; Cerveny, S.; Goyanes, S. Adsorption of Methylene Blue and Tetracycline by Zeolites Immobilized on a PBAT Electrospun Membrane. *Molecules* 2023, *28*, 81.

Adsorption tests

□ Methylene Blue adsorption results over Clin and AC

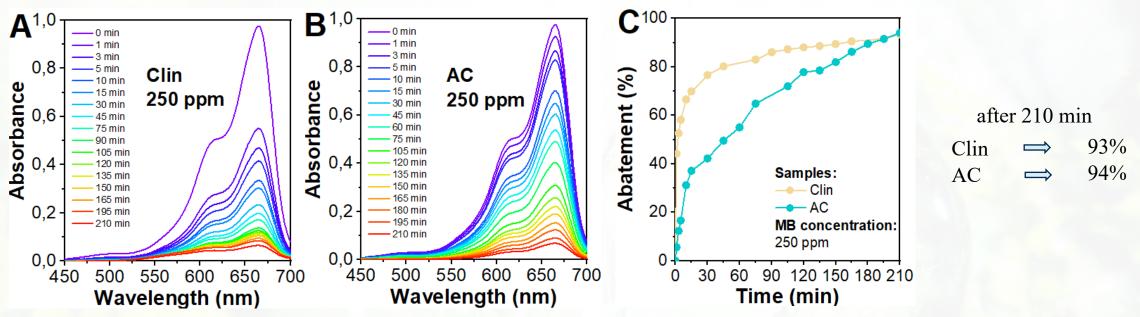


Fig.7 Clin (5 g/L) abatement tests (A) and AC (5 g/L) (B) performed with 250 ppm MB. MB abatement as a function of time (C) at 250 ppm MB

• MB easily attracted on the Clin surface

presence of metal cations on the Clin surface

good ion-exchange properties

• AC active sites

carboxyl, lactone, lactol, phenol, carbonyl, anhydride,
 ether, quinone, pyrone, chromene, pyridine, quaternary, pyridine, oxidized N, and pyrrole groups.

partial hydration of such chemical groups in water
NO strong interaction with cationic MB

Adsorption tests

A¹⁰⁰ **B**¹⁰⁰ 100 after 120 min **abatement (%)** %) **MB abatement (%)** 80 Clin abatement 60 100% MB, 57% Zn²⁺, 50% Cd²⁺ Samples: Samples: Samples: 40 — Clin - Clin Clin AC ---- AC -AC -AC Zn²⁺ Cd²⁺ Solution: Solution: Solution: $\hat{\Gamma}$ 20 20-20 250 ppm MB 250 ppm MB 250 ppm MB 10 ppm Zn² 100% MB, 86% Zn²⁺, 53% Cd²⁺ 10 ppm Zn²⁺ 10 ppm Zn²⁺ 10 ppm Cd²⁺ 10 ppm Cd²⁺ 10 ppm Cd²⁺ 0 0 0 30 60 90 30 60 90 120 0 120 30 60 90 120 0 0 Time (min) Time (min) Time (min)

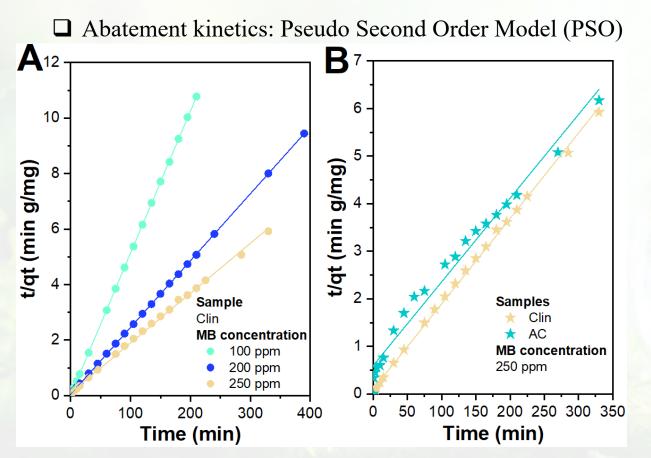
Adsorption results over Clin and AC with **co-presence** of **Methylene Blue and heavy metals**

Fig.8 Clin and AC abatement tests (10 g/L) with 250 ppm MB (A), 10 ppm Zn²⁺ (B), and 10 ppm Cd²⁺ (C) as a function of time.

- preferential adsorption of MB on the Clin surface
- \blacktriangleright adsorption of divalent cations with high hydration energy is nonselective
- ➤ adsorption of both metal cations reached a plateau
- > Zn^{2+} is preferentially adsorbed instead of Cd^{2+}

ionic radii Cd (0.97 Å) > Zn (0.74 Å)

ABATEMENT KINETIC


Models most commonly used to describe the sorption of dyes as well as other pollutants (heavy metals) on solid sorbents

Starting from the linearization

estimate model parameters from the slope and the intercept

	Kinetic study
Pseudo First Order (PFO)	
$\frac{dq}{dt} = k_1 \cdot (q_e - q)$	(1)
Pseudo Second Order (PSO)	
$\frac{dq}{dt} = k_2 \cdot (q_e - q)^2$	(2)
Elovich model	
$\frac{dq}{dt} = \alpha \cdot exp(-\beta \cdot q)$	(3)
Intraparticle diffusion model	
$q_t = k_i \cdot t^{0.5} + C$	(4)
Bangham model	
$ln(q_t) = \vartheta \cdot ln(t) + ln(k_B)$	(5)
Avrami kinetic model	
$\frac{dq}{dt} = k \cdot n \cdot t^{n-1} \cdot (q_e - q) \text{with } n \neq 1$	(6)

Kinetic study

 $\frac{t}{q_t} = \frac{1}{k_2 \cdot q_e^2} + \frac{t}{q_e}$

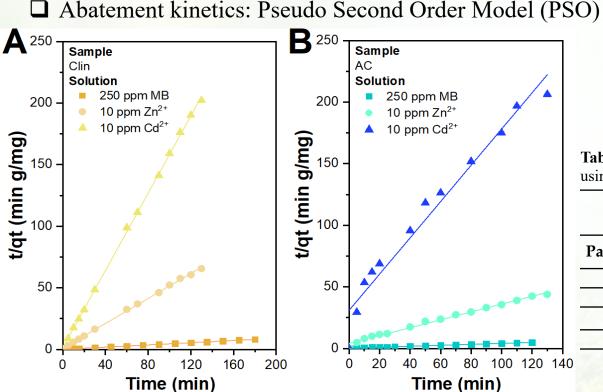
Table 3. Kinetic parameters of MB abatement using Clin and AC as adsorbents.

	MB concentration (ppm)					
	SCAN.	Clin		AC		
parameter	100	200	250	250		
R ²	1	1	0.9985	0.9786		
k_2 [g mg ⁻¹ min ⁻¹]	0.4460	0.0127	0.0033	0.0005		
qe, fit [mg g ⁻¹]	19.4932	41.4938	55.5556	56.8182		
qe, exp [mg g ⁻¹]	19.5897	41.4197	56.2159	53.5020		

Fig.9 Experimental data of MB abatement tests fitted with a PSO kinetic model with different concentrations of MB on Clin (A) and by using 250 ppm MB on Clin and AC (B).

PSO equation represents the adsorption kinetic of both contaminants more accurately

highest coefficient of determination R²


According to the model

ch ch

chemisorption is the primary mechanism involved in the adsorption of pollutants.

[6] Dosa, M.; Grifasi, N.; Galletti, C.; Fino, D.; Piumetti, M. Natural Zeolite Clinoptilolite Application in Wastewater Treatment: Methylene Blue, Zinc and Cadmium Abatement Tests and Kinetic Studies. *Materials* 2022, 15, 8191.

Kinetic study

Fig.10 Experimental data of a system with 250 ppm MB, 10 ppm Zn^{2+} , and 10 ppm Cd^{2+} fitted with a PSO kinetic model by using Clin (A) and AC (B) as adsorbents.

the PSO kinetic model exhibited the best fit over the entire time range for both adsorbents tested confirming chemisorption control over the entire abatement process. **Table 4.** Kinetic parameters of the system with 250 ppm MB, 10 ppm Zn²⁺, and 10 ppm Cd²⁺, using Clin and AC as adsorbents.

1 1 200	<i>C_{MB}</i> =250 ppm; <i>C_{Zn}</i> =10 ppm; <i>C_{Cd}</i> = 10 ppm									
		Clin		AC						
Parameters	MB	Zn	Cd	MB	Zn	Cd				
R ²	0.9999	0.9990	0.9995	0.9979	0.9902	0.9631				
k ₂	0.0609	0.3228	1.8599	0.0108	0.0253	0.0699				
q _{e,fit}	22.2717	1.9716	0.6370	25.3807	3.1279	0.6797				
q _{e,exp}	22.2054	1.9820	0.6430	24.4256	2.968	0.6300				

- ✓ R^2 coefficient close to unity
- ✓ values of $q_{e,fit}$ and $q_{e,exp}$ similar to each other

[6] Dosa, M.; Grifasi, N.; Galletti, C.; Fino, D.; Piumetti, M. Natural Zeolite Clinoptilolite Application in Wastewater Treatment: Methylene Blue, Zinc and Cadmium Abatement Tests and Kinetic Studies. Materials 2022, 15, 8191.

less energy positive impact

Conclusion

6 CLEAN WATER AND SANITATION

Abundant and easy

a highly effective material for the removal of heavy metals and organic dyes from waste streams

suitable material for several environmental applications thanks to different composition

chemisorption is the primary mechanism involved in the adsorption of pollutants.

Valid and sustainable alternative to expensive adsorbent

to find in nature

Acknowledgments

Zeolado Company is fully acknowledged for providing the Clinoptilolite used in this study Alessandra Gatto and Veronica Comodin for performing the adsorption tests

Thank you for your kind attention

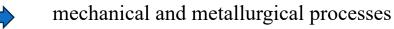
Nadia Grifasi PhD student in Chemical Engineering e-mail: nadia.grifasi@polito.it Department of Applied Science and Technology Polytechnic of Turin

Supporting information

The most popular and widespread industrial pollutants include:

Asbestos Heavy metals Petrochemical Pharmaceuticals synthetic organic dyes pesticides

carcinogenic non-biodegradable inhibit the action of bodily enzymes problematic for marine environments

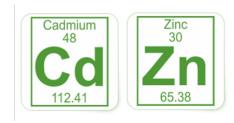

Jhansi, S. C., & Mishra, S. K. (2013). Wastewater Treatment and Reuse: Sustainability Options. *Consilience*, 10, 1–15.
 Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. *The Science of the total environment*, 717, 137222.

Synthetic organic dyes and heavy metals are considered **micropollutants** due to their low concentration (ng/l to μ g/l) in aquatic ecosystems.


- **Synthetic organic dyes**
- textile industry

• non-biodegradable wastewater more difficult to clean up by commercial methods

- toxic properties carcinogenic, allergic and dermatics effects
- react with difficulty stable to light, resistant to aerobic digestion and heat.
- **Heavy metals**



- high resistance to degradation
- high toxicity
- tend to accumulate in the environment
- exposure is very dangerous for human health

Methylene Blue as probe molecule

SYNTHETIC ORGANIC DYES

The main classes of synthetic organic dyes and their examples based on their chromogens

Chromogen	Colour index Generic name/colour Index Constitution number	CAS No.	Common name	Structural formula of dye	λ_{max} [nm
Acridine	C.I. basic orange 14 C.I. 46005	10127-02-3	Acridine orange	HJC N CHJ	500
Anthraquinone	C.I. mordant red 3 C.I. 58005	72-48-0	Alizarin red s	он он	609
Azo	C.I. solvent yellow 14 C.I. 12055	842-07-9	Sudan I	NN TO	476
Azine	C.I. basic red 5 C. I. 50040	553-24-2	Neutral red	H ₃ C _N CH ₃ CH ₃	530
Diphenylmethane	C.I. basic yellow 2 C.I. 41000	2465-27-2	Auramine O	H ₃ C. _N , CH ₃ CH ₃ CH ₃	432
Indigoid	C.I. acid blue 74 C.I. 73015	860-22-0	Indigo carmine	of the former	612
Methine	C.I. disperse blue 354 C.I. 48480	104137-27-1			610
Nitro	C.I. acid yellow 24 C. I. 10315	605-69-6	Martius yellow		432
Nitroso	C.I. acid green 1 C.I. 10020	19381-50-1	Naphthol green B	D. B. C. P. C. F. C. H.	714
azine	C.I. basic blue 9 C.I. 52015	61-73-4	Methylene blue	H ₃ C _N CH ₃ H ₃ C _N CH ₃ CH ₃	660

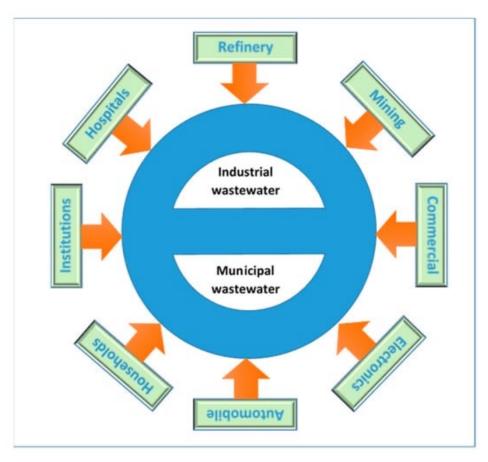
Dye name	Type of wastewater	Analytical method ^a	Limit of detection [µg/kg or µg/l]	Limit of quantitation [µg/kg or µg/l]	Concentration determined [µg/kg or µg/l]	Reference
Malachite green	Fish farm effluent	LC – MS	ND ^b	ND	0.0057-0.384	(Khodabakhshi and Amir 2012)
Acid yellow 15 Acid yellow 19 Acid yellow 19 Acid yellow 135 Acid orange 128 Acid red 151 Acid blue 25 Acid blue 40	STP effluent	HPLC – UV	ND	ND	Σ:2–3750	(Tincher, 1978)
Disperse yellow 3 Disperse yellow 23 Disperse yellow 54 Disperse red 55 Disperse red 60 Disperse blue 7 Disperse blue 120						
Acid red 1 Disperse blue 14 Disperse red 1 Sulphorhodamine B	STP effluent	HPLC – MS	0.002	ND	0.80-1.19 0.021-2.34 0.054-0.207 0.09-8.21	(Loos et al., 2003)
Rhodamine 6G Rhodamine B	STP effluent	HPLC – FLD	0.0001 0.0005	0.0003 0.0015	0.0007 0.037-0.062	(Chiang et al., 2011)
Disperse red 1 Disperse blue 373 Disperse violet 93	STP effluent	HPLC – MS/MS	0.002	0.008	0.15 1.13-1.47 0.79-1.47	(Zocolo et al., 2015)
Disperse blue 291 Disperse blue 373 Disperse red 1	STP effluent	HPLC – MS/MS	0.0022 0.0016 0.0003	0.0075 0.0054 0.0010	0.05 0.08-0.35 0.03-0.19	(Vacchi et al., 2017)
Disperse blue 373 Disperse orange 37	Textile effluent untreated/textile effluent treated	HPLC – DAD	ND	ND	57.9/67 316/126	(Oliveira et al., 2007)
Disperse orange 37 Disperse violet 93 disperse blue 373	Textile effluent untreated/textile effluent treated	HPLC – DAD	0.09 ^c 0.84 ^c 0.09 ^c	0.27 ^c 0.84 ^c 0.26 ^c	316/126 12/6.03 57.9/67	(Carneiro et al., 2010)
Disperse brown 1 Disperse orange 3 Disperse orange 37/76 Disperse red 1 Disperse red 17 Disperse yellow 1 Disperse yellow 49	Textile effluent	SFC – UV	2.9 1.9 4.0 1.1 3.3 15.6 3.1	9.6 6.2 13.5 3.7 11 52 10.5	109 17 53 12–34 63 90–306 23–428	(Lou et al., 2018)
Brilliant green Methylene blue	Textile wastewater Laundry effluent Paper effluent Printing effluent Textile effluent	UV-vis UPLC – MS/MS	47 0.3	ND 0.9	3220 360 540 830 1080	(Damirchi et al., 2019) (Khan et al., 2014)
Malachite green	Laundry effluent Paper effluent Printing effluent Textile effluent	UPLC – MS/MS	0.1	0.4	1320 620 790 1680	(Khan et al., 2019)

List of the synthetic organic dues determined in different types of effluent and sou

The textile industry is an important source of dyes in water environments: during different dyeing processes dye wastage is at least 5% and can reach 50%, depending on the type of fabric and dye and as a result almost 200 billion litres of coloured effluents are generated annually. It is estimated that 2% of dyes produced are discharged directly into the blow-down system

[2] Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. *The Science of the total environment*, 717, 137222.
 [3] Dosa, M., Piumetti, M., Bensaid, S., Russo, N., Baglieri, O., Miglietta, F., & Fino, D. (2018). Properties of the Clinoptilolite: Characterization and Adsorption Tests with Methylene Blue.

Industry source	Al	Zn	As	Sn	Ag	Sb	Cd	Cr	Cu	Fe	Hg	Mn	Pb	Ni	Bi
Automobile		Х		Х			Х	Х		Х			Х	Х	
Petroleum refining		Х	Х					Х	Х	Х			Х	Х	
Pulp and paper		Х						Х	Х		Х		Х	Х	
Textile								Х							
Steel		Х	Х			Х	Х	Х		Х			Х	Х	
Organic chemicals	Х	Х	Х	Х			Х	Х		Х	Х		Х		
Inorganic chemicals	Х	Х	Х				Х	Х		Х	Х		Х		
Fertilizer	Х	Х	Х				Х	Х	Х	Х	Х	Х	Х	Х	
Plastic and synthetics										Х					
Leather tanning and finishing								Х							
Steel power plants		Х						Х							
Mining			Х				Х		Х		Х	Х	Х		
Acid mine drainage	Х	Х							Х	Х		Х			
Metal plating		Х					Х	Х	Х						
Glass			Х												
Nuclear power															Х
Coal and gasoline											Х		Х		Х


Heavy metals in some major industries

• Zinc

galvanic process

• Cadmium

nickel-cadmium batteries, pigments, coatings, and stabilizers for plastic materials

Depicts a schematic representation of industrial and municipal wastewater sources[9]

Main techniques used in wastewater purification [10]

[9] El Batouti, M.; Al-Harby, N.F.; Elewa, M.M. A Review on Promising Membrane Technology Approaches for Heavy Metal Removal from Water and Wastewater to Solve Water Crisis. *Water* **2021**, *13*, 3241. [10] Rafique, M., Hajra, S., Tahir, M. B., Gillani, S. S. A., & Irshad, M. (2022). A review on sources of heavy metals, their toxicity and removal technique using physico-chemical processes from wastewater. *Environmental Science and Pollution Research*, *29*(11), 16772-16781.

□ ACTIVATED CARBON

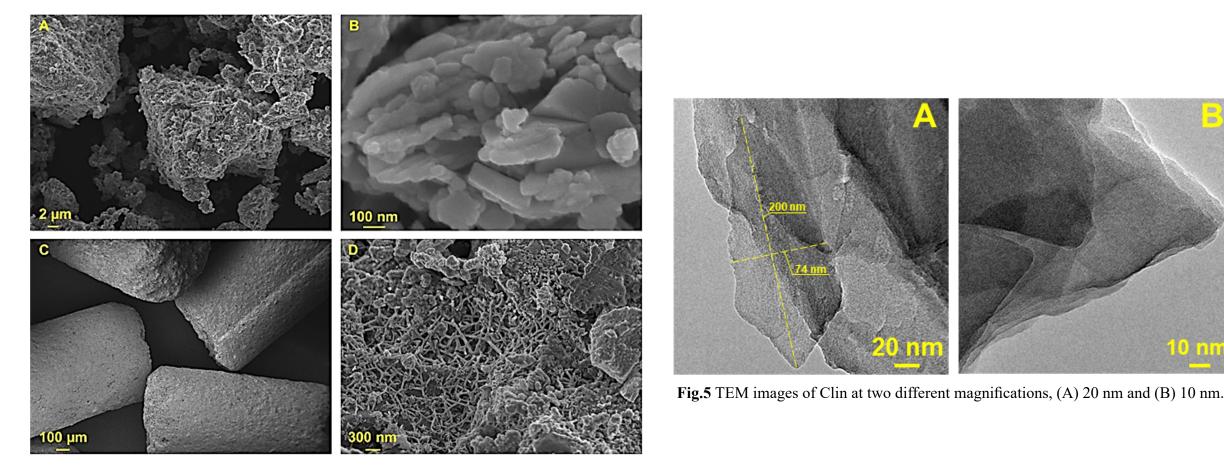
Advantages and disadvantages of commercial activated carbons

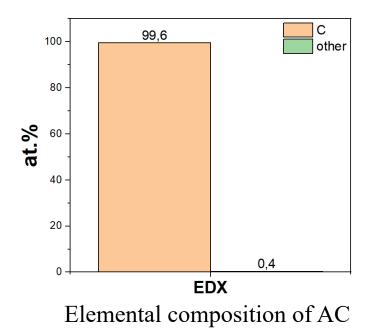
Adsorbent	Advantages	Disadvantages
	• The most effective adsorbent	• Expensive
	• Very high surface areas	• The higher the quality, the greater the cost
	• Porous sorbent	• Performance is dependent on the type of carbon
	• High capacity and high rate of adsorption	used
Activated carbon	 Great capacity to adsorb a wide range of pollutants Fast kinetics 	 Requires complexing agents to improve its removal performance
	• A high quality-treated effluent is obtained	• Non-selective
		• Problems with hydrophilic substances
		• Ineffective for disperse and vat dyes
		High reactivation costs
		• Reactivation results in a loss of the carbon

The most effective adsorbent is activated carbon but due to a high cost other inexpensive adsorbents are employed sourced from different types of wastes such as bamboo, coir pith, oil palm shell or rubber tire.

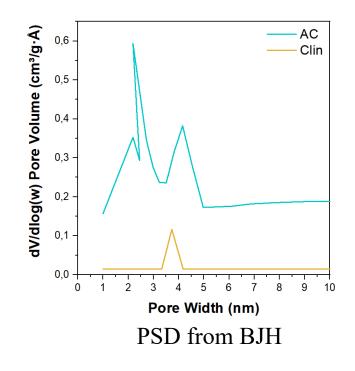
23

Characterization




Fig.4 FESEM images of Clin (A,B) and AC (C,D) at different magnifications

- Clin exhibits flake-like structure and grains with no well-defined crystal faces (A, B)
- AC presents a multiwallet mesopore structure (C,D)


$\overline{\nabla}$

- flake-like structure of Clin
- average dimension of a particular Clin particle $\rightarrow 200 \times 74$ nm

□ ACTIVATED CARBON: composition and PSD

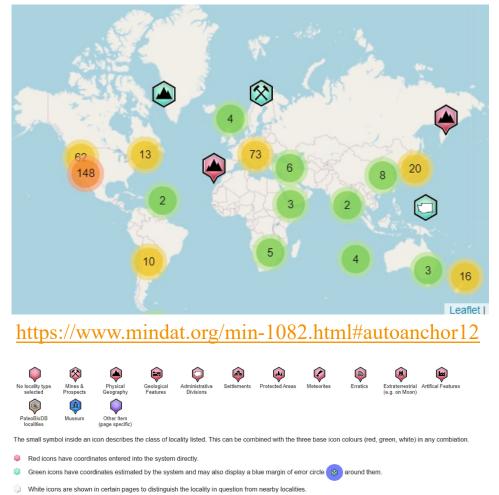
- black granules with an average dimension of particles (≤0.5%) less than 0.60 mm.
- The water content, evaluated by the Karl Fisher Titration method, was lower than 0.5%.
- Steam activated

Methylene blue (MB) : volume of dimensions 17.0 x 7.6 x 3.3 Å

□ PRICE OF CLIN AND ACTIVATED CARBON

ACTIVATED CARBON \rightarrow price changes depending on the procedure and the matrix used

The prices for **clinoptilolite** zeolite typically range from **\$200 to \$600 per tons**, depending on several factors, including the zeolite content and processing, origin and market prices


Overall, the costs of AC are approximately 1.08–2.89 \$ kg-1.

Thus, it is evident that Clin is cheaper than AC

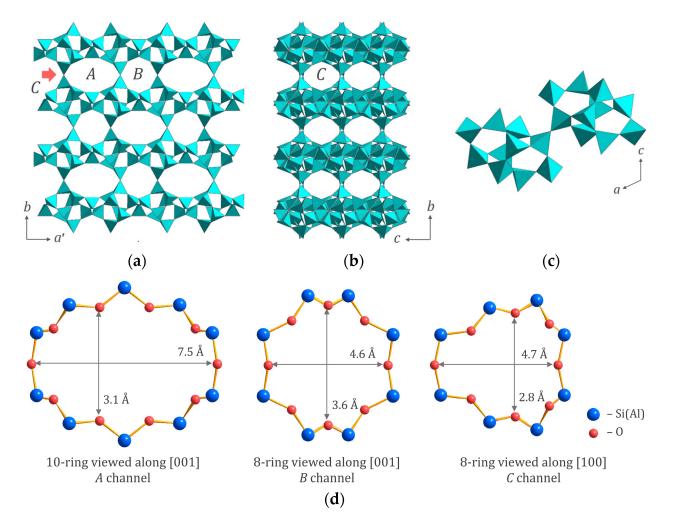
Matrix	Cost (USD kg-1)
Pecan shell	2.72-2 89
Poultry waste	1.44
Tires	2.23
Wood,	2.49
Petroleum coke	1.08
Carbon black	1.22
Coal	1.25
Lignite	2.18

Davarpanah, E., Armandi, M., Hernández, S., Fino, D., Arletti, R., Bensaid, S., & Piumetti, M. (2020). CO₂ capture on natural zeolite clinoptilolite: Effect of temperature and role of the adsorption sites. *Journal of environmental management*, 275, 111229. Dosa, M.; Grifasi, N.; Galletti, C.; Fino, D.; Piumetti, M. Natural Zeolite Clinoptilolite Application in Wastewater Treatment: Methylene Blue, Zinc and Cadmium Abatement Tests and Kinetic Studies. *Materials* 2022, 15, 8191.

CLINOPTILOLITE DEPOSITS and COMPOSITION

🕢 When multiple icons are close together they may be clustered into a group represented by a green circle, click to reveal the contents.

Clin has a different percentage of minerals comprising an amorphous phase, kaolinite, and illite, and the rest are Clinoptilolite minerals.


Adsorbent material: Clin				
	Clinoptilolite	66.4 (1)		
OPA modults (set $0/$)	Illite	0.8 (2)		
QPA results (wt.%)	Kaolinite	4.0 (2)		
	Amorphous phase	28.8 (1)		
	Rwp (%)	0.089		
Refinement statistic	Rp (%)	0.059		
	RF ² (%)	0.086		

The clinoptilolite framework is occupied by a variety of exchangeable cations (Ca2+, Na+, K+, and Mg2+) with water bound in the cavities in the hydrated form.

Chemical composition depends on the geographic area of mining.

Davarpanah, E., Armandi, M., Hernández, S., Fino, D., Arletti, R., Bensaid, S., & Piumetti, M. (2020). CO₂ capture on natural zeolite clinoptilolite: Effect of temperature and role of the adsorption sites. *Journal of environmental management* **27***75*, 111229. Dosa, M.; Grifasi, N.; Galletti, C.; Fino, D.; Piumetti, M. Natural Zeolite Clinoptilolite Application in Wastewater Treatment: Methylene Blue, Zinc and Cadmium Abatement Tests and Kinetic Studies. *Materials* **2022**, *15*, 8191.

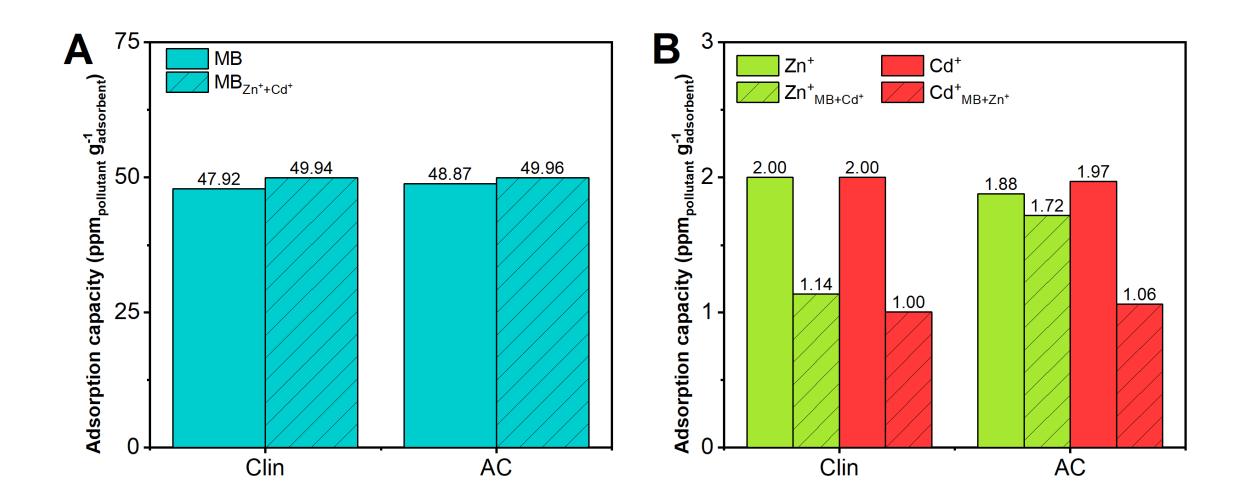
□ CLINOPTILOLITE FRAMEWORK

void volume about 34%, estimated from the water content. The water occupies micropores and channels, in which exchangeable cations take place: Na, K, Ca or others (Mg, Fe, Sr, Ba) depending on which geographical area the clinoptilolite comes from. The ratio Si/Al can vary from 4.0 to 5.3, according to the Lowenstein's rule: the ratio Si/Al is always larger than 1

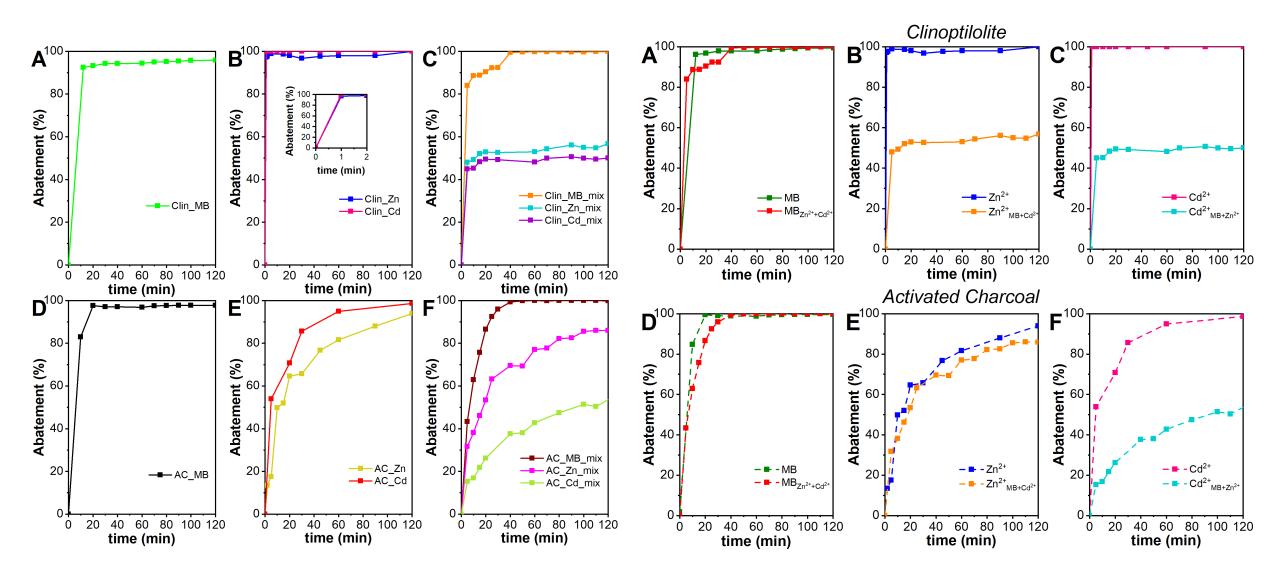
Rodríguez-Iznaga, I.; Shelyapina, M.G.; Petranovskii, V. Ion Exchange in Natural Clinoptilolite: Aspects Related to Its Structure and Applications. *Minerals* 2022, 12, 1628.

Dosa, M., Piumetti, M., Davarpanah, E., Moncaglieri, G., Bensaid, S., Fino, D. (2021). Natural Zeolites as Sustainable Materials for Environmental Processes. In: Piumetti, M., Bensaid, S. (eds) Nanostructured Catalysts for Environmental Applications. Springer, Cham.

				MB concentration (ppm)			
				Clin		AC	
Model	Equation	Parameters	100	200	250	250	
		R^2	0.2496	0.7594	0.9159	0.9188	
Pseudo First Order	7	k_1	0.0116	0.0133	0.0111	0.0134	
		q _{e,fit}	0.7371	6.3630	19.8459	51.4803	
		q _{e,exp}	19.5897	41.4197	56.2159	53.5020	
		R^2	1	1	0.9985	0.9786	
Pseudo Second Order	8	k_2	0.4460	0.0127	0.0033	0.0005	
		q _{e,fit}	19.4932	41.4938	55.5556	56.8182	
		$q_{e,exp}$	19.5897	41.4197	56.2159	53.5020	
Intraparticle Diffusion	4	R^2	0.3017	0.4887	0.6499	0.9707	
		k_i	0.5235	1.1673	1.9014	3.1658	
		С	13.7420	25.6400	28.5310	3.9967	
Elovich	9	R^2	0.4478	0.7116	0.8158	0.9613	
		α	1693.8155	360.2312	175.6284	6.4746	
		β	0.5850	0.2275	0.1559	0.1067	
Bangham	5	R^2	0.3179	0.3889	0.4279	0.9158	
		θ	0.2147	0.2704	0.3063	0.5562	
		k _B	7.4536	11.2211	12.1399	2.8460	
Avrami	10	R^2	0.3992	0.7133	0.7088	0.6826	
		n	0.2150	0.2959	0.2404	0.4954	
		k _A	1.7049	0.8992	0.7728	0.1353	


 $q = \frac{(C_0 - C) \cdot V}{m}$

Dosa, M.; Grifasi, N.; Galletti, C.; Fino, D.; Piumetti, M. Natural Zeolite Clinoptilolite Application in Wastewater Treatment: Methylene Blue, Zinc and Cadmium Abatement Tests and Kinetic Studies. *Materials* **2022**, *15*, 8191.


		<i>C_{MB}</i> =250 ppm; <i>C_{Zn}</i> =10 ppm; <i>C_{Cd}</i> =10 ppm						
				Clin			AC	
Model	Equation	Parameters	MB	Zn	Cd	MB	Zn	Cd
Pseudo-First-Order	(7)	R^2	0.5591	0.2499	0.0434	0.7044	0.6648	0.1891
		k_1	0.0286	0.0167	0.0067	0.0650	0.0183	0.0086
		<i>q_{e,fit}</i>	2.0530	0.3422	0.0576	7.7145	1.7296	0.3836
		q _{e,exp}	22.2054	1.9820	0.643	24.4256	2.968	0.6300
Pseudo-Second-Order	(8)	R^2	0.9999	0.9990	0.9995	0.9979	0.9902	0.9631
		k2	0.0609	0.3228	1.8599	0.0108	0.0253	0.0699
		q _{e,fit}	22.2717	1.9716	0.6370	25.3807	3.1279	0.6797
		q _{e,exp}	22.2054	1.9820	0.6430	24.4256	2.968	0.6300
Intraparticle Diffusion	(4)	R^2	0.3409	0.4493	0.3961	0.6889	0.9267	0.9844
		k _i	0.6897	0.0938	0.0289	1.7666	0.2322	0.0537
		С	15.1210	1.0874	0.3732	9.2597	0.5441	0.0353
	(9)	R^2	0.4426	0.6557	0.6077	0.8979	0.9920	0.9616
Elovich		α	1645.0404	3.6169	1.4994	10.1944	0.5882	0.0832
		β	0.5040	3.4758	11.0011	0.2013	1.6420	7.6746
	(5)	R^2	0.3064	0.7467	0.2486	0.7299	0.9356	0.0402
Bangham		θ	0.2317	0.1050	-0.0474	0.5263	0.2646	0.0721
		k _B	2.0936	1.2354	0.7519	2.9032	0.8139	0.3194
	(10)	R ²	0.4655	0.3438	0.2837	0.5768	0.5305	0.3941
Avrami		n	0.2664	0.2064	0.1804	0.5516	0.3342	0.2883
		k _A	1.4421	1.2376	1.4599	0.4703	0.4316	0.3639

DETAILES OF KINETIC MODEL PARAMETERS (II)

□ ADSORPTION CAPACITY

□ ABATEMENT DETAILS

Adsorbent Material	MB Concentration (ppm)	pH _{time=0 min}	pH _{time=210 min}
	100	8.36	7.11
Clin	200	8.01	5.65
	250	6.18	6.09

When the MB amount increases,

The pH decreases since the OH- species in solution are attracted to cationic MB, and the pH decreases to 8.01 and 6.18 at 200 and 250 ppm, time zero min, respectively.