

Microscreening: A novel process for the removal of suspended solids from wastewater, upfront of the aeration tank

Konstantinos Tsamoutsoglou¹, Anthoula Manali ¹, Petros Gikas¹

¹ Design of Environmental Processes Laboratory, School of Chemical and Environmental Engineering Technical University of Crete, Chania, Greece

Microsieving: A novel process for the removal of suspended solids from wastewater, upfront of the aeration tank

Overloaded Wastewater Treatments Plants (WWTPS)

Energy distribution in conventional activated sludge systems

Typical problems of overloaded WWTPs

> 70% consumed for aeration and treatment of primary sludge (Siatou et al., 2020)

Microsieving: A novel process for the removal of suspended solids from wastewater, upfront of the aeration tank

Advanced Primary Filtration Systems (APFS): Microscreens

- **APFs** are emerging technologies in wastewater treatment.
- The **goal** is to reduce the organic loading to the secondary treatment process.

Microsieving: A novel process for the removal of suspended solids from wastewater, upfront of the aeration tank

Main advantages:

- Self-cleaning filtration devices in continuous operation using a fine mesh screen.
- Biosolids production over 35% solids.
- Space requirement is 1/20 compared to primary sedimentation.

Microsieving: A novel process for the removal of suspended solids from wastewater, upfront of the aeration tank

Microscreen

- a. Microscreen with open housing
- b. Sludge removal (over 35% TS)
- c. Microscreen cloth (100-350 µm openings)

Microsieving: A novel process for the removal of suspended solids from wastewater, upfront of the aeration tank

Biosolids

- Managed as solids
- Total solids: 40-45%
 - Volatile solids: 85-90%of TS
- C/N about: 20
- High Heating Value: 22-24MJ/kg

Application of microscreens, upstream of various wastewater treatment process

Microsieving: A novel process for the removal of suspended solids from wastewater, upfront of the aeration tank

Footprint requirements

Wastewater flow: 4,000m³/d: Microscreen footprint: 4 m² Clarifier footprint: 82 m²

Biosolids to energy

- Title: New concept for energy self-sustainable wastewater treatment process and biosolids management
- Acronym: LIFE B2E4sustainable-WWTP
- Life duration: 01//09/2017-01/02/2024
- ➤ Total budget: 2.000.000€

> Partners:

Website: www.biosolids2energy.eu

Coordinator

General description

Project outline

- Microsieving: removal of primary biosolids upfront of the aeration tank
- Drying: Moisture removal from biosolids
- Gasification: Syngas production
- Co-generation: Production of thermal and electric energy

Project Facts:

- Wastewater capacity: 5,000 m³/d
- Location: WWTP of Rethymno, Greece
- Biosolids management: ½ t/d
- Biosolids Higher Heating Value: 21.5 MJ/kg
- Syngas productionn: 1,800-2,400 Nm3/d
- Targer electrical energy production: 30-50 kW

Microsieving: A novel process for the removal of suspended solids from wastewater, upfront of the aeration tank

ANELIXI project in the frame of Interreg V-A Greece-Cyprus 2014-2020

- **Title:** Upgrade of WWTPs for the management of increased demands and the reduction of the operational cost
- Acronyme: Anelixi
- **Project duration:** 01/08/2021-31/10/2023
- **Total Budget:** about 1,000,000 €
- Website: anelixi.tuc.gr
- Funders: 🔅 European Union
 - National Funds of Greece and Cyprus

ANELIXI project in the frame of Interreg V-A Greece-Cyprus 2014-2020

The main objectives of the ANELIXI project:

- Increase the capacity of existing WWTPs
- Low construction and operation cost compared to alternative technologies
- Reduction of energy cost of existing WWTPs by approximately 35%
- Production of biosolids with solids content over 35%

ANELIXI project in the frame of Interreg V-A Greece-Cyprus

Problem
Insufficient performance of WWTPs due to overloading.
High energy consumption of activated sludge plants.

□ Suggested solution

Application of filtration systems upstream of the aeration tank Locations: Kyperounta,Cyprus/ Paros,Greece. Capacities: 600/1,200 m³/d. Solids removal: 80-90%

Expected results

Managing increased input loads. Reduction of the total electricity consumption of WWTPs by 30-35%.

Microsieving: A novel process for the removal of suspended solids from wastewater, upfront of the aeration tank

WWTP of Marpissa, Greece-Case study I

Characteristics of the project ANELIXI

- Maximum hydraulic capacity: 2,500 m³/d
- Targets:
 - □ Acceptance of increased input load,
 - □ Reduce energy and operating costs in general.

Marpissa's WWTP

- ✤ 5,000 EI
- Maximum flow rate: 865 m³/d

Operational Challenges: 70-105 kg/d of biosolids (wet base)

Microsieving: A novel process for the removal of suspended solids from wastewater, upfront of the aeration tank

WWTP of Kyperounda, Cyprus – Case study II

Characteristics of the project ANELIXI

- Maximum hydraulic capacity: 600 m³/d
- Targets:
 - □ Acceptance of increased input load,
 - Reduce energy and operating costs in general

Kyperounda's WWTP✤ 2,400 El

✤ Maximum flow rate: 300 m³/d

Operational Challenges: 127-197 kg/d of biosolids (wet base)

Conclusions

- Biosolids removal, upfront of the aeration tank will significantly improve the performance of existing WWTP.
- Microsieving is a viable option for the expansion and upgrade of overloaded WWTPs, compared to the primary clarifiers
- The produced biosolids (sewage sludge) with solids content over 35% are ideal for the production of fertilizer or energy utilization.
- The wastewater treatment process should be redesigned in light of recent technological advances and the requirements of contemporary society.

Thank you for your attention

10th International Conference on Sustainable Solid Waste Management Chania, Greece, 21 - 24 JUNE 2023

For more information: pgikas@tuc.gr; ktsamoutsoglou@tuc.gr; ktsamoutsoglou@tuc.gr

This study is co-financed by the European Regional Development Fund (ERDF) and national resources of Greece and Cyprus, through the of the Cooperation Program INTERREG V-A Greece - Cyprus 2014-2020: "Upgrade of WWTPs for the management of increased demands and the reduction of the operational cost" (ANELIXI).

This study is supported by the Green Fund and the LIFE project (EC): "New concept for energy self-sustainable wastewater treatment process and biosolids management (LIFE B2E4sustainableWWTP)", LIFE16 ENV/GR/000298