

UNIVERSITAT DE VIC UNIVERSITAT CENTRAL DE CATALUNYA

Novel biostimulant bacterial EPS production via Solid-state fermentation as a valorisation strategy for agri-food waste

Enric Garcia Muchart

Laura Mejias Torrent Oscar Martínez-Avila

10th International Conference on Sustainable Solid Waste Management Chania, 21-24 June 2023

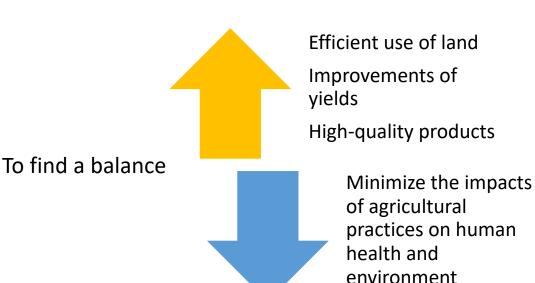
- 1) General context
 - 2) Objectives

- 3) Materials and methods
- 4) Experimental design
- 5) Main results and discussion
- 6) Conclusions

GENERAL CONTEXT

Circular economy and valorisation concept

GENERAL CONTEXT


Biostimulants

Chemical fertilizers: massive use which produces negative effects on the environment derived from their energy-intensive production, processing and application.

Organic fertilizers: alternative source of nutrients. They provide significant advantages as substitute of chemical counterparts, but some nutrients can not be easily used by plants due to the chemical bounding they have.

BIOSTIMULANTS

"a substance and/or microorganism whose function when applied to plants or the rhizosphere is to stimulate natural processes to enhance/benefit nutrient uptake, nutrient efficiency, tolerance to abiotic stress and crop quality" Regulation (EU) 2019/1009

GENERAL CONTEXT

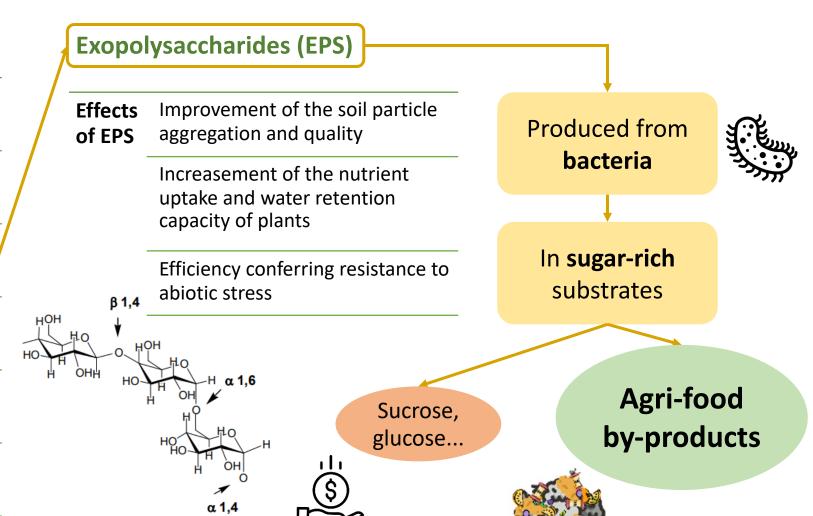
Biostimulants

A substance is defined as **biostimulant** based on its **function**, instead of what it contains.

Regulation (EU) 2019/1009

6 main groups

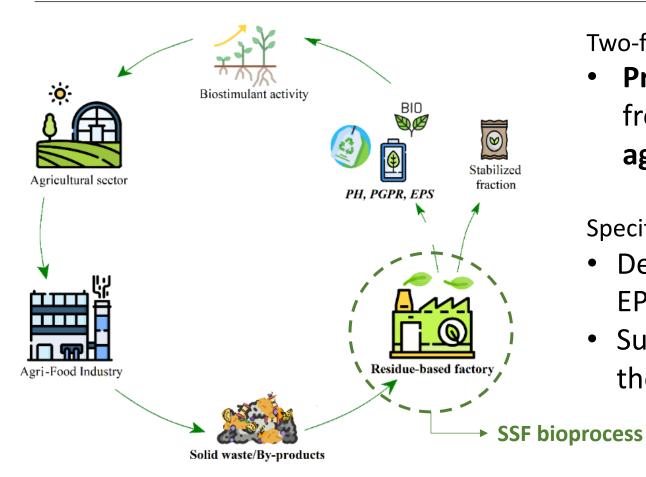
Humic and fulvic substances


Protein hydrolysates and other N-containing compounds

Seaweed extracts and botanicals

Chitosan and other polymers

Inorganic compounds


Beneficial fungi and bacteria

OBJECTIVES

Two-fold general objective:

Produce EPS (value-added bioproduct)
from specific bacteria through SSF using
agri-food waste as substrate (valorisation).

Specific objectives:

- Determine the **best conditions** to maximize EPS production at **lab-scale**.
- Suggest a value-chain new perspective for the agri-food industry.

AGRI-PROSUME project

Initial date: 01/09/2021 Final date: 31/08/2025

MATERIALS AND METHODS

Microorganisms

Bibliographical research

+ Representative variety

Optimal growth conditions

Azotobacter beijerinckii (CECT 9204)

N-fixing bacteria + **EPS** production

30°C, 48 h, aerobic

Leuconostoc mesenteroides (DSM 20484)

EPS production

30ºC

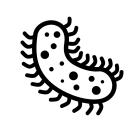
Geobacillus thermodenitrificans (DSM 465)

EPS production

60°C, sugars, aerobic facultative

Alicyclobacillus acidocaldarius (CECT 4328)

Amylases + **EPS** production


55°C, 72 h, aerobic, low pH

Burkholderia cepacia (CCM 2656)

PHA + EPS production

30ºC

Bacterial strains

MATERIALS AND METHODS

By-products / Substrates

CoBeverage

_AB

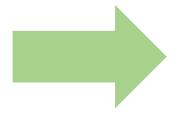
Beet and Ginger Juice Waste (BJW & GJW)

Apple Pomace (AP)

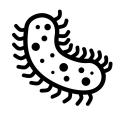
LIQUATS

Vegetable Milk Waste (VMW)

Pomegranate Peels and Seeds (PP & PS)

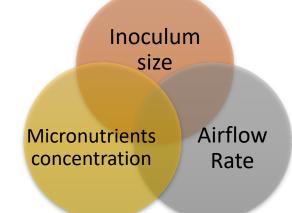


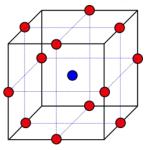
EXPERIMENTAL DESIGN


Screening experiments

Time-course dynamics

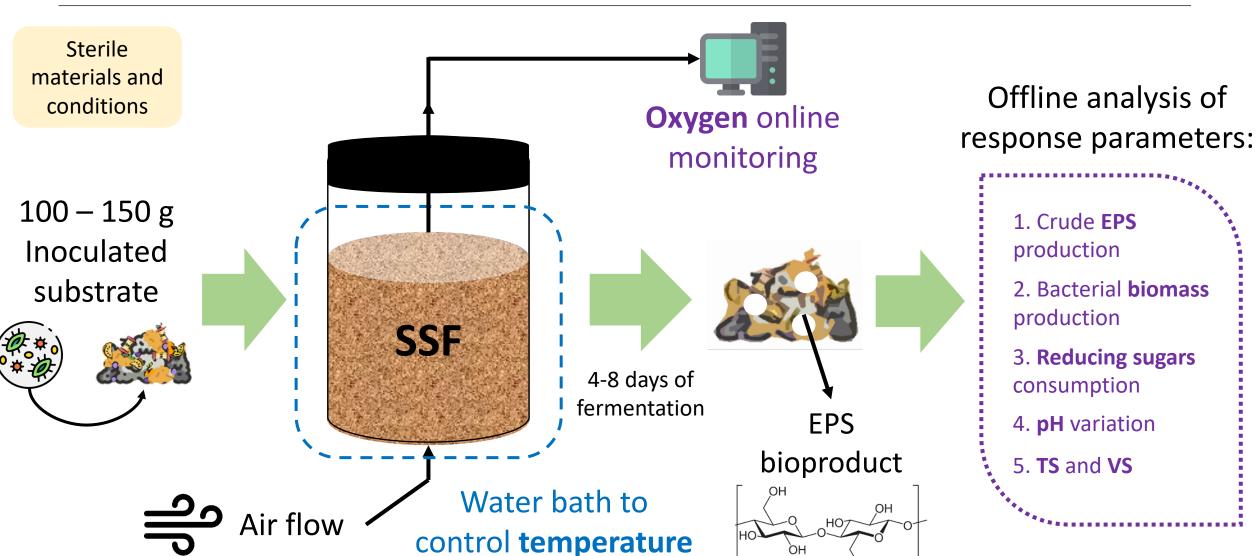
Optimisation of operational parameters


Bacteria


By-products

8 days

0, 24, 48, 72, 96, 120, 144, 168, 192h


Box-Behnken design

MATERIALS AND METHODS

Lab-scale SSF system

MAIN RESULTS

Characterisation

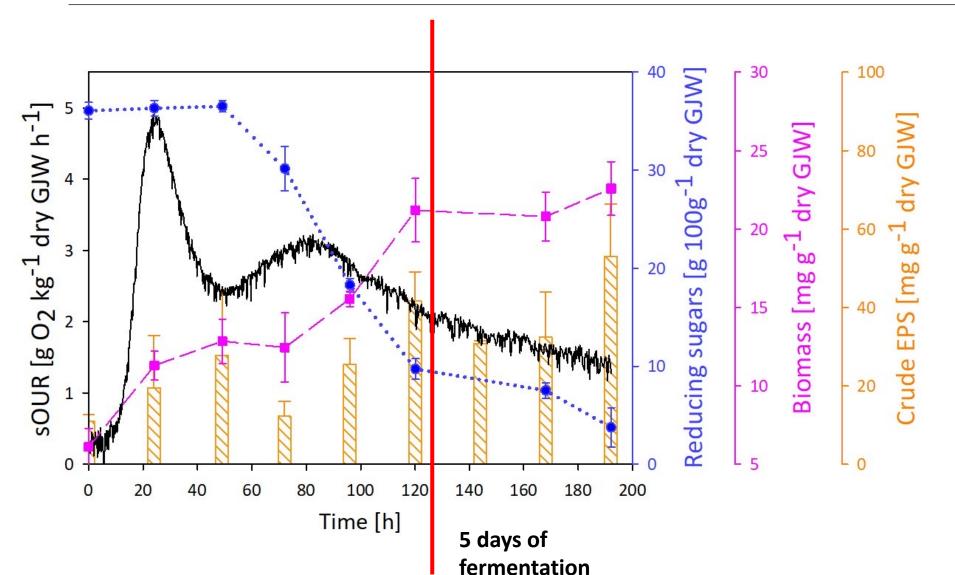
	рН	Red. Sugars (g g ⁻¹ DM)	C/N ratio	WHC (mL g ⁻¹)
Part Ivian	5.0	0.24	24.2	4.27
Beet Juice	5.0	0.24	34.2	1.37
Ginger Juice	4.3	0.35	58.9	1.87
Apple Pomace	3.7	0.43	67.8	1.12
Pomegranate Peels	3.8	0.13	106.7	0.20
Pomegranate Seeds	4.3	0.09	19.2	0.93
Vegetable Milk Waste	4.5	0.06	9.3	0.37

Good conditions for EPS production in SSF system:

- Acid **pH** values
- High C/N ratio
- Elevated content of available sugars
- Enough WHC to retain the inoculum

MAIN RESULTS

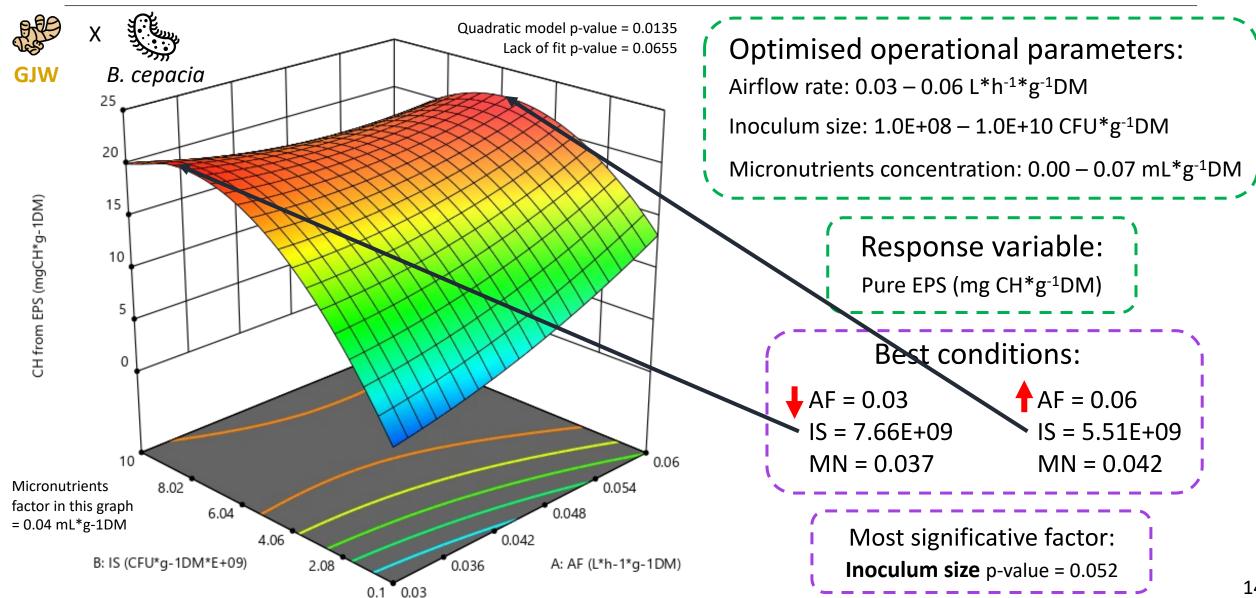
Screening


	X	pH variation	Biomass (mg g ⁻¹ DM)	Red. Sugars consumed (%)	AT ₄ (mg O ₂ g ⁻¹ DM)	Crude EPS (mg g ⁻¹ DM)
BJW	B. cepacia	2.2	15.1	71.4	301.6	44.9
GJW	B. cepacia	1.5	16.6	82.2	242.5	55.4
АР	B. cepacia	0.5	5.0	21.1	253.6	0.0
BJW	A. beijerinckii	1.5	1.6	29.5	103.6	0.0
BJW	A. acidocaldarius	0.1	0.0	0.0	33.5	8.1

MAIN RESULTS

Time-course

GJW B. cepacia


- 1. **EPS** production stops in day 5
- 2. Bacterial **biomass** growth stops in day 5
- 3. **Reducing sugars** consumption stops in day 5
- 4. Specific **oxygen** uptake rate shows bacterial growth dynamic

Beta Biodiversitat, Ecologia, Tecnologia Ambiental i Alimentària

MAIN RESULTS

Optimisation

CONCLUSIONS

Produce EPS from agri-food waste through SSF, at lab-scale.

• Propose a valorisation strategy for agri-food by-products.

• Find the **best combination substrate-strain** and optimize the **SSF time** and some operational parameters (**MN**, **AF** and **IS**).

Produced EPS pellet from 5 g of GJW x *B.cepacia*

FUTURE RESEARCH

• Collect enough information to focus further research in an scale-up phase, approaching the industrial perspective.

• Prove the **biostimulant effect** from the obtained EPS on pottest or field applications.

Sustainability assessment of the production technology.

