CHANIA 2023

CORN STALKS AS A LIGNOCELLULOSE SUBSTRATE FOR BIOREFINERY APPLICATIONS

Aleksandra DJUKIĆ-VUKOVIĆ¹*, Jovana GRBIĆ², Dragana MLADENOVIĆ², Stefan PAVLOVIĆ³, Saša LAZOVIĆ⁴,, Ljiljana MOJOVIĆ¹

¹University of Belgrade, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia

²Innovation centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia

³ University of Belgrade, Institute of Chemistry, Technology, and Metallurgy, 10001, Belgrade, Serbia

⁴University of Belgrade, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

*E-mail: <u>adjukic@tmf.bg.ac.rs</u>

Potters, G., Van Goethem, D. & Schutte, F. (2010) Nature Education 3(9):14

Phase III biorefinery/Biotech Phase II biorefinery Phase I biorefinery Feed Composting/ Anaerobic digestion Landfilling Burning Corn stalks as a lignocellulose substrate

Challenges for better resource recovery:

- recalcitrant nature of dominantly present lignocellulose
- variability in biomass composition

Treatments?

Improved biocatalysts (enzymes and microorganisms)?

© Statista 2023

Worldwide production of grain in 2022/23, by type (in million metric tons)*

Corn stalks

cellulose rich parenchyma

Li, H., Ye, C., Liu, K., Gu, H., Du, W., & Bao, J. (2015). *Bioprocess and biosystems engineering*, 38, 149-154.

Proposed lignin-carbohydrate (LC) bonds in wood and grass biomass

PG=phenyl glycosides, BE=benzyl ethers; GE=γ-esters; FE=ferulate esters; CE=coumarate esters.

Challange: To separate carbohydrate and lignin fractions in order to valorize both in the best possible way

Giummarella, N., Pu, Y., Ragauskas, A. J., & Lawoko, M. (2019). Green Chemistry, 21(7), 1573-1595.

HO

carbon-dioxide extraction

Conventional treatments:

Acid/Alkaline/Oxidation treatments

biorefinery

fatty acid

2014

2015

2016

2017

2018

2019

seed oil

Thermal treatments

- generate inhibitory compounds for enzymes or microorganisms used in biorefineries
 bigh environmental footprint
- high environmental footprint

Timescaled co-occurence network - bibliometric map of research on food waste, by-products and nonthermal processing (Scopus)

Djukić-Vuković, A. P., et al. (2022). In Nonthermal Processing in Agri-Food-Bio Sciences: Sustainability and Future Goals (pp. 687-709). Springer

Fenton reaction

 $Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH + -OH$ k₁=63-76 M⁻¹ s⁻¹

 $H_2O_2 + Fe^{3+} \rightarrow HO_2 + Fe^{2+} + H^+$ k₂=0.001-0.01 M⁻¹ s⁻¹

Fenton-based pretreatment is low energy and mild treatment, it is very timeconsuming
due to low concentration of hydroxyl radicals generated during the pretreatment process

+ Cold atmospheric plasma treatment

Acetyl Bromid Soluble Lignin

Textural properties determined by mercury intrusion porosimetry

PSD curves

As the treatment time increases:

- Stabilization of the porous structure and uniform distribution of pores occur.
- This stability is confirmed by the decreasing difference between two consecutive intrusion cycles (Run 1 and Run 2), higher porosity and larger pore volume compared to the samples that were treated for a shorter time.

Enzymatic hydrolysis of delignified biomass – sugars concentration

✓ It is important to examine kinetics of delignification by plasma and to optimise hydrolysis conditions.
 ✓ Stressors or inhibitors present in these type of media could affect kinetics of microbial and enzymatic biotransformations

Conclusions

- The combination of plasma and Fenton reagent results in better delignification and it shortens Fenton reaction time affecting the textural properties of samples – kinetics*
- Recovery of hexoses is significantly improved by Fenton/cold plasma assisted treatment while recovery of pentose sugars is lower in current set up in comparison to control, untreated sample
- Selectivity is an issue separation/extraction prior to treatment* breaking of bonds between sugars and lignin

Republic of Serbia

• Mihailo Mladenović, Master student

Thank you for your attention!

Contact:

Aleksandra Djukić Vuković Department of Biochemical Engineering and Biotechnology

Faculty of Technology and Metallurgy University of Belgrade Belgrade Serbia

adjukic@tmf.bg.ac.rs

