Analysis of water soluble metals in sulfide open-cast mines

M. Stylianou¹, S. Giannoukos², A. Agapiou³

¹Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus, Nicosia 2231, Cyprus ²Department of Chemistry and Applied Biosciences, ETH Zurich, HCI D 317, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland ³Department of Chemistry, Volatolomics Research Lab, University of Cyprus, P.O. Box 20537, Nicosia, 1678, Cyprus

1. Abstract

- > Abandoned sulfide mines in Cyprus are known to produce acid mine drainage (AMD), which is directly linked to potential environmental harm.
- > New analytical techniques must be created and put into use immediately to find potential pollutants.
- > In this work, a sampling campaign was performed to collect liquid samples from various mines in the Nicosia region.
- > The samples came from various sites that were close to the mine crater, as well as from nearby pollution hotspots where liquid extracts could be obtained.
- > An in house-built extraction electrospray ionization (EESI) source connected to a field-deployable highresolution time-of-flight mass spectrometer (ToF-MS) was used to analyze the collected water soluble samples.
- > A deeper knowledge of the fundamental mechanisms governing the release of water-soluble metals and their evolution in the environment, industry, or general public health will be possible thanks to the development of the EESI-ToF-MS.

 \succ According to the findings, copper is the element with the highest concentration across all sites.

- > The maximum values recorded across all locations exhibit a narrow range of 50-115 mg/m³.
- > When compared to samples retrieved from craters, those taken directly from AMD showed higher amounts

Figure 1: Abandoned sulfide mines in Cyprus – sampling locations

2. Experimental

Experimental Setup

UNIVERSITY OF

University of Cyprus

Department of Chemistry

- > Water soluble metal particles are continuously sampled through a multi-channel denuder into an extractive electrospray ionization (EESI) source and intersect with a highly charged spray generated by a conventional electrospray capillary.
- > Soluble components are extracted in the spray and ionized by the Coulomb explosion method before detection by the ToF-MS.

ppm of disodium EDTA dehydrate

coupled to a TOF-MS system.

Figure 6: Examples of liquid samples taken from sulfide mine craters.

ETHzürich

Calibration curves for Zn, Pb, Ba and Cd 0.3 $R^2 = 0.9987$ $R^2 = 0.9998$ $R^2 = 0.9994$ = 0 999 Lead - m/z 497 Cadmium - m/z 403 • Zinc - m/z 353 Barium - m/z 427 20 30 50 10 40 60 Concentration (ng/m³)

Figure 5. Representative calibration curves for a) zinc, b) lead, c) barium and d) cadmium obtained from the EESI-TOF-MS.

- > Max values measured in all location show a close variation between 50-115 mg/m³
- > Location F has the highest concentration between samples due to acid mine drainage (solution taken after waste dumps extracted by rain

5. References

Gavriel, I., K. Kostarelos, M. Stylianou, and A. Pourjabbar. 2014. "Contaminant Transport Mechanisms at an Abandoned Sulfide Mine." Environmental Geotechnics 1 (4). https://doi.org/10.1680/envgeo.13.00006.

Gavriel, Ifigenia, Konstantinos Kostarelos, Marinos Stylianou, and Anahita Pourjabbar. 2014. "Contaminant Transport Mechanisms at an Abandoned Sulfide Mine." Environmental Geotechnics 1 (4): 222–39. https://doi.org/10.1680/envgeo.13.00006

Kostarelos, Konstantinos, Ifigenia Gavriel, Marinos Stylianou, Andreas M. Zissimos, Eleni Morisseau, and Dimitris Dermatas. 2015. "Legacy Soil Contamination at Abandoned Mine Sites: Making a Case for Guidance on Soil Protection." Bulletin of Environmental Contamination and Toxicology 94 (3): 269–74.

Stergiopoulos, D., K. Dermentzis, T. Spanos, P. Giannakoudakis, A. Agapiou, and M. Stylianou. 2019. "Combined Electrocoagulation/Electrowinning Process for Recovery of Metallic Copper from Electroplating Effluents." Journal of Engineering Science and Technology Review 12 (3). https://doi.org/10.25103/jestr.123.01

Stylianou, M, K Tsiftes, I Gavriel, K Kostarelos, C Demetriou, and A Papaioannou. 2014. "Environmental Impacts of Abandoned Sulphide Mines—the Example of Mathiatis Mine in Cyprus." Proceedings of the SYMBIOSIS International Conference, Athens 19 (March): 21.

Stylianou, Marinos, Ifigenia Gavriel, Ioannis N. Vogiatzakis, Antonis Zorpas, and Agapios Agapiou. 2020. "Native Plants for the Remediation of Abandoned Sulphide Mines in Cyprus: A Preliminary Assessment." Journal of Environmental Management 274 (August): 110531. https://doi.org/10.1016/j.jenvman.2020.110531.

CHANIA 2023 ^{10th} International Conference on Sustainable Solid Waste Management, 21-24 June 2023