LCA of goat milk production: A case study from Cyprus

Marinos Stylianou^{*1}, Kyriaki G. Agkastiniotou¹, Iliana Papamichael¹, Irene Voukkali¹, Michalis Omirou², Ioannis M. Ioannides^{*+2}, Antonis A. Zorpas¹

¹Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus, Nicosia 2231, Cyprus ²Department of Agrobiotechnology, Agricultural Research Institute, Nicosia, Cyprus

> *Corresponding authors: e-mail address: marinos.stylianou@ouc.ac.cy; iioannides@ari.moa.gov.cy ⁺ Presenting author: Dr. Ioannis M. Ioannides

- Goat milk production in Cyprus has gained significant attention in recent years, due to the production of traditional cheese (halloumi), prompting a growing interest in assessing its environmental impacts through life cycle assessment (LCA).
- LCA is a comprehensive methodology that evaluates the environmental burdens associated with a product or process throughout its entire life cycle, from raw

Function and functional unit

The product system's function is to provide refrigerated raw milk for primary consumption and raw material for dairy products. The functional unit considered 1 kg FPCM—fat and protein corrected milk, representing the equivalent milk mass national Dairy Federation, FPCM is calculated by Equation:

kgFPCM = MP × $[(0.1226 \times \% F) + (0.0776 \times \% P) + 0.2534]$

where MP is the milk produced, in kg; %*F* is the fat content per kg of milk; %*P* is the protein content per kg of milk.

The F and P percentages were standardized at 4% fat and 3.3% milk protein, as recommended by the IDF, the FPCM assures a fair comparison between farms with a different breed or feed management (Carvalho et al., 2022).

Reference Comirou M, Stephanou C, Anastopoulos I, Philippot L, Ioannides IM. Differential response of N2O emissions, N2O-producing and N2O-reducing bacteria to varying tetracycline doses in fertilized soil. Environ Res 2022;214:114013. https://doi.org/10.1016/j.envres.2022.114013. Carvalho LS, Willers CD, Soares BB, Nogueira AR, de Almeida Neto JA, Rodrigues LB. Environmental life cycle assessment of cow milk in a conventional semi-intensive Brazilian production system. Environ Sci Pollut Res 2022;29:21259–74. https://doi.org/10.1007/s11356-021-17317-5. Robertson K, Symes W, Garnham M. Carbon footprint of dairy goat milk production in New Zealand. J Dairy Sci 2015;98:4279–93. https://doi.org/10.3168/jds.2014-9104. Zanni S, Roccaro M, Bocedi F, Peli A, Bonoli A. LCA to Estimate the Environmental Impact of Dairy Farms: A Case Study. Sustain 2022;14:1–15. https://doi.org/10.3390/su14106028. □ https://pixabay.com/vectors/animal-goat-nature-silhouette-158047/

RESEARCH & INNOVATION

FOUNDATION

Chania 2023 ^{10th} International Conference on Sustainable Solid Waste Management, 21-24 June 2023