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The aim of the current research is focused:

➢ On the upgrading of bio-based triacylglycerides (TAGs)

via hydroprocessing to marine and jet bio-fuels.

➢ Biogenic residues and wastes were gasified and the

syngas was fermented to produce bio-based

triacylglycerides (TAGs).

➢ All Hydrotreating experiments performed in a TRL 3

continuous flow, pilot-scale hydroprocessing plant VB01

of the Chemical Process & Energy Resources Institute

(CPERI) of the Center for Research and Technology

Hellas (CERTH) (Picture 1&2).

➢ A commercial hydrotreating catalyst was employed.

➢ The effect of hydrotreating operating parameters was

investigated (Table 1)
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Results & Discussion

➢ TAGs were simulated via a blend of various commercial vegetable oils with an accuracy of ~80%

➢ Hydrotreating of the model compound has led to ~56 wt% jet fuel and ~42 wt% marine diesel range hydrocarbons

➢ Operating hydrotreating window influence the mass product yields and oxygen removal reaction pathway

➢ Optimum condition No. 3, higher jet and marine fuel yields while the oxygen is removed mostly via hydrodeoxygenation instead of decarbonylation a& 

decarboxylation reactions

Conclusions

Feed:

For the purpose of the current investigation, biogenic residues and wastes

were gasified and the syngas was fermented to produce bio-based

triacylglycerides (TAGs). However, due to the limited availability of the

feedstock, the TAGs were simulated via a model compound.

The fatty acid composition of the TAGs was analyzed and a model

compound was developed simulating their composition via a blend of four

commercial vegetable oils (Palm oil, Flaxseed oil, Olive oil and Pumpkin oil).

Model compound can simulate the fatty acid composition of TAGs by ~80%

(Figure 1)

Marine diesel and jet fuel range hydrocarbons were produced via

hydrotreating of TAGs (Figure 3)

➢ Cond. 1: 41 wt% Jet-fuel & 59 wt% Marine diesel fuel

➢ Cond. 2: 35 wt% Jet-fuel & 65 wt% Marine diesel fuel

➢ Cond. 3: 56 wt% Jet-fuel & 42 wt% Marine diesel fuel

Picture 1: TRL 3 Hydrotreating unit

➢ An increase of temperature favor hydrodeoxygenation reactions leading

to a less oxygenate product but with higher H2 consumption during the

process (Figure 4)

Parameters Units Cond. 1 Cond. 2 Cond. 3

Temperature C 350 360 375

Pressure psi 1450 1450 1450

H2/Oil ratio scfb 5930 5930 5930

LHSV hr-1 1 1 1

Table 1: Operating testing window
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Figure 3: Feed & product mass recovery curve
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acid
Palmitole

ic acid

TAGs 0.00 0.00 24.00 14.00 48.00 9.00 2.00 0.00 3.00

Model compound 0.09 0.43 24.00 3.25 48.00 19.61 2.00 0.51 0.00
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Figure 1: Fatty acid composition from TAGs & model compound

Products:

➢ Hydrotreating increased the hydrogen content in all products increasing in

that way the energy content of the produced fuels (Figure 2)

Hydroprocessing Group

Figure 2: H and C elemental composition on dry basis of feeds and products 

after hydrotreatment

Figure 4: Oxygen distribution in gas and liquid products
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