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The global demand on utilizing sustainable and ecologically friendly products

based on raw materials has as result intense research on potential application

of cellulose materials. Cellulose Nano-Fibrils (CNF), Nano-Crystalline

Cellulose (NCC), purified or as lignocellulose, and bacterial nanocellulose

(BNC) are intended to the development and application of high-performance

industrial nanocomposites. Especially for lignocelluloses, the less energy/time

consuming processes required to turn the biomass into the final nanostructured

filler and the presence of lignin, which may be helpful for some applications, are

key-factors that render these materials scientifically attractive. Focusing on the

biodegradability and water solubility, Poly Vinyl Alcohol (PVA) and widely

bioavailable Chitosan, have been used as polymeric matrices[1,2].
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Results & Discussion

Conclusions

Image 1: PVA nanocomposites of 1-5-10%

lignocellulose loading (left to right)

Figure 1: ATR/IR spectra of cellulose, BC, lignocellulose, lignin.

• PVA 89-98kDa (S.Aldrich)

• Chitosan medium mol. weight (S.Aldrich)

• Lignocellulose nanofibers (API Europe)

• Nanocrystalline cellulose, CNC (Univ. Maine)

• Bacterial nanocellulose, BC (Agr. Uni. Athens)

nanocomposite preparation

Good quality, homogenous films of both PVA

and chitosan have been prepared by the film

casting method from aqueous solutions

(adding 1% acetic acid in the case of

chitosan).

Materials and Methods
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Figure 2: XRD graphs of PVA nanocomposites with 

various lignocellulose loading.

Figure 3: DSC thermographs of PVA nanocomposites with 

various lignocellulose loading (up). Comparison of PVA 

crystallinity vs loading for CNC and lignocellulose based

composites (down).
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Figure 5: DMA graphs of chitosan composites with various loadings of lignocellulose (left) and 

CNC (right).

In order to develop biodegradable food packaging composites with enhanced barrier

properties, both thermal and mechanical properties which are of prominent impotence have

been examined.

Our first results indicate that lignocellulose may result in enhanced mechanical properties by

affecting the crystalline structure of the host polymer (case of PVA). On the other hand,

decrease of mechanical properties is observed in non-crystalline polymers (chitosan case).

Initial experiments with Bacterial NanoCellulose inclusions shows similar behavior as CNC.

Introduction

✓Differential Scanning Calorimetry

(DSC) indicates the effect of cellulose

inclusions on the thermal properties of

composites.

✓Molecular Spectroscopy (ATR-IR) can

differentiate the spectral contribution of

each component in lignocellulose and

bacterial cellulose (BC)

✓Dynamic Mechanical Analysis (DMA) highlights the effect of loading

in the stiffness for all studied composites.

Concentration

Targets

1. Composite wood products, as performance enhancers of

adhesives and surface protective coatings.

2. Food packaging materials as additives to enhance

barrier properties

a) development and characterization of

nanocomposite materials based on nanocellulose (MFC,

CNF, NFC, BNC)

b) thorough study of the release of substances/particles

from the composites to food simulants using certified

methodologies and specially designed cells/devises.

Migration control 

from food 

packaging 

materials 

Certified migration 

cells

✓X-Ray Diffraction (XRD) can verify &

monitor cellulosic species in PVA

composites.

• Both CNC and lignocellulose exhibit a 

maximum Xc% at ~1% loading.

• In all studied loadings CNC composites 

exhibit higher Xc% than pristine PVA.

• Lignocellulose loading does not seem to 

have similar trend on Xc% as CNC. 
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Figure 4:Comparative DMA graphs of PVA composites with  loading of 1% 

(left) and 5% (right) on CNC and lignocellulose. 

• Both CNC and lignocellulose composites possess elastic modulus values 

higher than that of PVA. These values increase with loading.[3]

• With respect to CNC, lignocellulose offers better mechanical properties 

at low loadings (~1%)

• At higher loadings, CNC composites exhibit higher Young Modulus.
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• CNC inclusions result in progressive enhancement of composite’s 

Young Modulus as a function of loading.

• Lignocellulose inclusions on the other hand result in composites with 

lower Modulus that the pristine chitosan samples.

• Lignocellulose consists of cellulose and 

lignin (1270, 1511 and 1590cm-1)

• Sharp BC bands are attributed to increased 

crystallinity, especially compared to 

lignocellulose. 

• Cellulose loading in PVA composites is justified 

by the intensity of the 22.6o cellulose peak.

Cellulosic inclusion uptake identification 

Cellulosic inclusions’ Characterization Thermal properties of PVA composites 

Thermo-Mechanical properties of chitosan composites 

Thermo-Mechanical properties of PVA composites 


