# **Circular economy in municipal organic waste** management: process evaluation and quality of the composts obtained in a decentralized composting plant

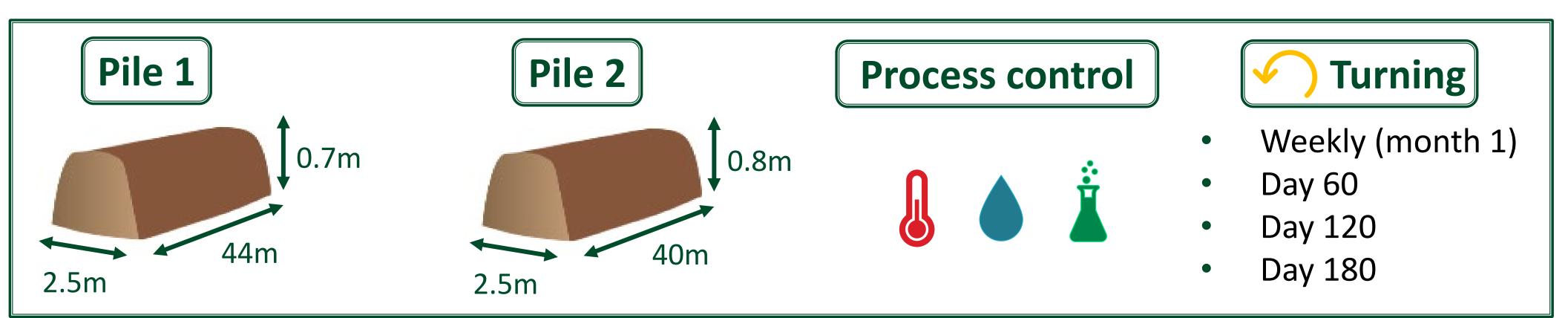
<u>C. Álvarez-Alonso<sup>1</sup>, M. D. Pérez-Murcia<sup>1</sup>, I. Irigoien<sup>2</sup>, M. López<sup>3</sup>, E. Martínez-Sabater<sup>1</sup>, S. Sánchez-</u> Méndez<sup>1</sup>, E. Agulló<sup>1</sup>, R. Moral<sup>1</sup> and M. A. Bustamante<sup>1</sup>

<sup>1</sup> CIAGRO, University Miguel Hernández, EPS-Orihuela. Orihuela, Alicante, Spain.

<sup>2</sup> Dep. of Agricultural Production, Public University of Navarre (UPNA-NUP). Pamplona, Spain. <sup>3</sup> Politecnic University of Catalunya (UPC), Baix Llobregat Campus. Castelldefels, Barcelona, Spain.



The management of municipal organic waste in the framework of the economy together with the current European Union circular requirements to manage bio-waste separately, have given rise to new models of decentralized composting adapted to the characteristics of each area, which increase the reuse and recycling of the organic fraction from the selective collection of municipal solid waste (OFMSW), with the ultimate aim of reducing the consumption of natural resources and protecting environmental and human health.




An example of this type of composting model is the decentralized composting plant placed at the municipality of Lumbier (Navarre, Spain), where the OFMSW is managed by composting. The aim of this work was to study and compare two cycles of the composting processes developed at the decentralized composting plant mentioned by monitoring the composting process and to assess the quality, agronomic value and characteristics of the end-products obtained.

## Material & methods

#### **Characteristics of the initial materials**

|                           | OFMSW1 | OFMSW2 | PW1  | PW2  |
|---------------------------|--------|--------|------|------|
| Moisture (%)              | 83.2   | 81.2   | 38.4 | 4.7  |
| рН                        | 5.7    | 5.2    | 6.5  | 7.6  |
| EC (dS m <sup>-1</sup> )  | 8.7    | 9.2    | 0.9  | 1.1  |
| OM (%)                    | 78.6   | 80.3   | 93.6 | 42.2 |
| TOC (%)                   | 43.3   | 42.8   | 47.0 | 25.2 |
| TN(%)                     | 3.0    | 2.3    | 0.4  | 0.9  |
| TOC/TN ratio              | 14.4   | 18.6   | 117  | 28.0 |
| P (%)                     | 6.7    | 3.0    | 0.4  | 1.6  |
| K (%)                     | 16.2   | 12.9   | 2.5  | 8.8  |
| Zn (mg kg <sup>-1</sup> ) | 42.8   | 19.0   | 20.4 | 58.7 |
| Cr (mg kg <sup>-1</sup> ) | 16.9   | 6.3    | 34.5 | 62.1 |
| Cd (mg kg <sup>-1</sup> ) | 0.1    | 0.1    | 0.1  | 0.4  |
| Ni (mg kg <sup>-1</sup> ) | 7.0    | 1.7    | 6.5  | 14.3 |
| Pb (mg kg <sup>-1</sup> ) | 2.1    | 0.9    | 1.2  | 19.9 |



The duration of the bio-oxidative phase of the process was **150 days** for the 3 piles

| Mature     | Samples                            | Parameters                                               |
|------------|------------------------------------|----------------------------------------------------------|
| time       | M1 Initial M3 End of Bio-oxidative | <ul> <li>Physico-chemical</li> <li>Biological</li> </ul> |
| 2-3 months | M2 Thermophilic phase M4 Maturity  | Chemical • Self-heating test                             |

### **Results & Discussion**

#### **Thermal process characteristics**

#### Both piles showed a rapid temperature

**increase** during the first days of the process,

reaching temperature values above 60°C,

which were maintained more than a week.

Thus, both piles complied with the

requirements of EU Regulation 2019/1009

which guarantees the sanitization of the

composting mass.

#### **Evolution of physico-chemical and chemical parameters**

| Composting<br>phases         | Moisture % | BD<br>(kg l⁻¹) | рН  | EC<br>(dS m <sup>-1</sup> ) | Na<br>(g kg <sup>-1</sup> ) | OM<br>% | TOC/TN | TN<br>% | K <sub>2</sub> O<br>% | P <sub>2</sub> O <sub>5</sub><br>% |
|------------------------------|------------|----------------|-----|-----------------------------|-----------------------------|---------|--------|---------|-----------------------|------------------------------------|
| Pile 1: 50% OFMSW1 + 50% PW1 |            |                |     |                             |                             |         |        |         |                       |                                    |
| M1                           | 62.0       | 0.635          | 6.9 | 4.3                         | 3.8                         | 65.4    | 18.8   | 2.1     | 1.4                   | 1.8                                |
| M2                           | 53.0       | 0.351          | 7.6 | 2.9                         | 2.7                         | 60.1    | 18.3   | 1.6     | 1.1                   | 1.1                                |
| M3                           | 49.8       | 0.514          | 8.4 | 2.7                         | 3.1                         | 48.6    | 12.1   | 2.4     | 1.5                   | 1.8                                |
| M4                           | 47.2       | 0.622          | 8.1 | 2.5                         | 3.5                         | 41.5    | 11.9   | 2.1     | 1.6                   | 1.7                                |
| Pile 2: 50% OFMSW2 + 50% PW2 |            |                |     |                             |                             |         |        |         |                       |                                    |
| M1                           | 53.7       | 0,492          | 5.8 | 7.0                         | 3.8                         | 67.1    | 18.4   | 2,0     | 1.5                   | 1.3                                |
| M2                           | 45.9       | 0.440          | 7.9 | 3.1                         | 3.0                         | 54.5    | 16.3   | 1.8     | 1.5                   | 1.2                                |
| M3                           | 43.9       | 0.401          | 8.3 | 2.4                         | 3.0                         | 52.7    | 13.6   | 2.0     | 1.3                   | 1.5                                |
| M4                           | 46.8       | 0.512          | 8.0 | 2.0                         | 2.3                         | 44.8    | 10.3   | 2.6     | 1.3                   | 2.1                                |

**pH** and **EC decrease** during the composting process in both mixtures, probably due to the abundant irrigation or rainfall during outdoor treatment. The **OM** concentration decreased too, as did the TOC/TN ratio, with final values below 20 (maximum value) established for mature compost).

#### Maturity and stability parameters

#### **Environmental and health risks**

|        | Cd<br>(mg kg <sup>-1</sup> ) | Ni<br>(mg kg <sup>-1</sup> ) | Cu<br>(mg kg⁻¹) | Zn<br>(mg kg <sup>-1</sup> ) | Cr<br>(mg kg <sup>-1</sup> ) | Pb<br>(mg kg <sup>-1</sup> ) | Salmonella/25g | <i>E. coli</i><br>(NMP/g) |
|--------|------------------------------|------------------------------|-----------------|------------------------------|------------------------------|------------------------------|----------------|---------------------------|
| Pile 1 | 2                            | 16                           | 22              | 98                           | 53                           | 14                           | Absence        | < 3                       |
| Pile 2 | 0.4                          | 12                           | 21              | 138                          | 41                           | 16                           | Absence        | 3600                      |

|        | Germination<br>Index % | Humic<br>Acids % | Fulvic<br>Acids % | Thermal stability degree<br>(Brinton et al., 1995) |
|--------|------------------------|------------------|-------------------|----------------------------------------------------|
| Pile 1 | 107                    | 4.7              | 1.6               | V, Stable                                          |
| Pile 2 | 119                    | 4.2              | 1.8               | V, Stable                                          |

All composts showed adequate maturity and stability with absence of phytotoxicity, Cha/Chf>1.6 and degree of thermal stability V.

### **Conclusions & Acknowledgements**

The decentralized composting system for the management of the separately collected organic fraction of municipal waste is a sustainable model that completes the circular economy cycle and provides environmental benefits by avoiding less sustainable practices. The mixtures studied made it possible to obtain high quality, mature, stable final composts with good agronomic characteristics that guarantee. The control of the process and the characterization of the final compost is essential to avoid the use of materials that could pose a risk to the human health and the environment.

No environmental or health risk, low concentrations of heavy metals and absence of Salmonella sp. The E.coli values for pile 2 were slightly higher than the maximum allowed by Spanish legislation.



This research has been financed in the framework of the research project NEOCOMP (ref. PID2020-113228RB-100) funded by MCIN/ AEI /10.13039/501100011033 and, also, was supported by the Spanish Ministry of Science and Innovation via doctoral grant to the first author (FPU21/01207). The authors also wish to thank JoseneaBio S.L.U. for its participation in this study.