Biowaste recovery by co-composting. Limiting factors of the process and agronomic final product quality

A. García-Rández^{*}, L. Orden^{*,**}, V. Blay^{*}, F.J. Andreu-Rodríguez^{*}, M. Torres^{*}, J.A. Sáez-Tovar^{*}, S. Sánchez Méndez^{*}, E. Martínez Sabater^{*}, E. Agulló^{*}, M.D. Pérez-Murcia^{*}, M.A. Bustamante^{*}, R. Moral^{*}.

*Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández,

EPS-Orihuela, Ctra. Beniel Km 3.2, 03312 Orihuela, Alicante.

** EEA INTA Ascasubi. Ruta 3 Km 794, Hilario Ascasubi, Buenos Aires, 8142, Argentina

Presenting author email: <u>angarran@hotmail.com</u>

Introduction

In Spain, Castellón province **produce 542 ton year**⁻¹ **of municipal solid waste (MSW),** which represents 15% of the entire of Valencian Community (PIRCV, 2020). The bioestabilized it can **be used in agriculture soils for a circular economy** (BOE, 2022), resulting an **important source of organic matter** due to the almost generalized deficiency in Spain's soils (Gil et al., 2008)

The quality of the biostabilized have led to its rejection by farmers, which **currently** means a **non-optimized organic waste flow that is transferred to landfills**

The valorization of this biostabilized can be carried out through local co-composting processes with other agrifood waste flows, obtaining stabilized compost oriented for agricultural use.

Figures 1, 2, 3: preparing start up mix, irrigation system, and turning:

 The aim of this work is to evaluate the co-composting process of bioestabilized organic

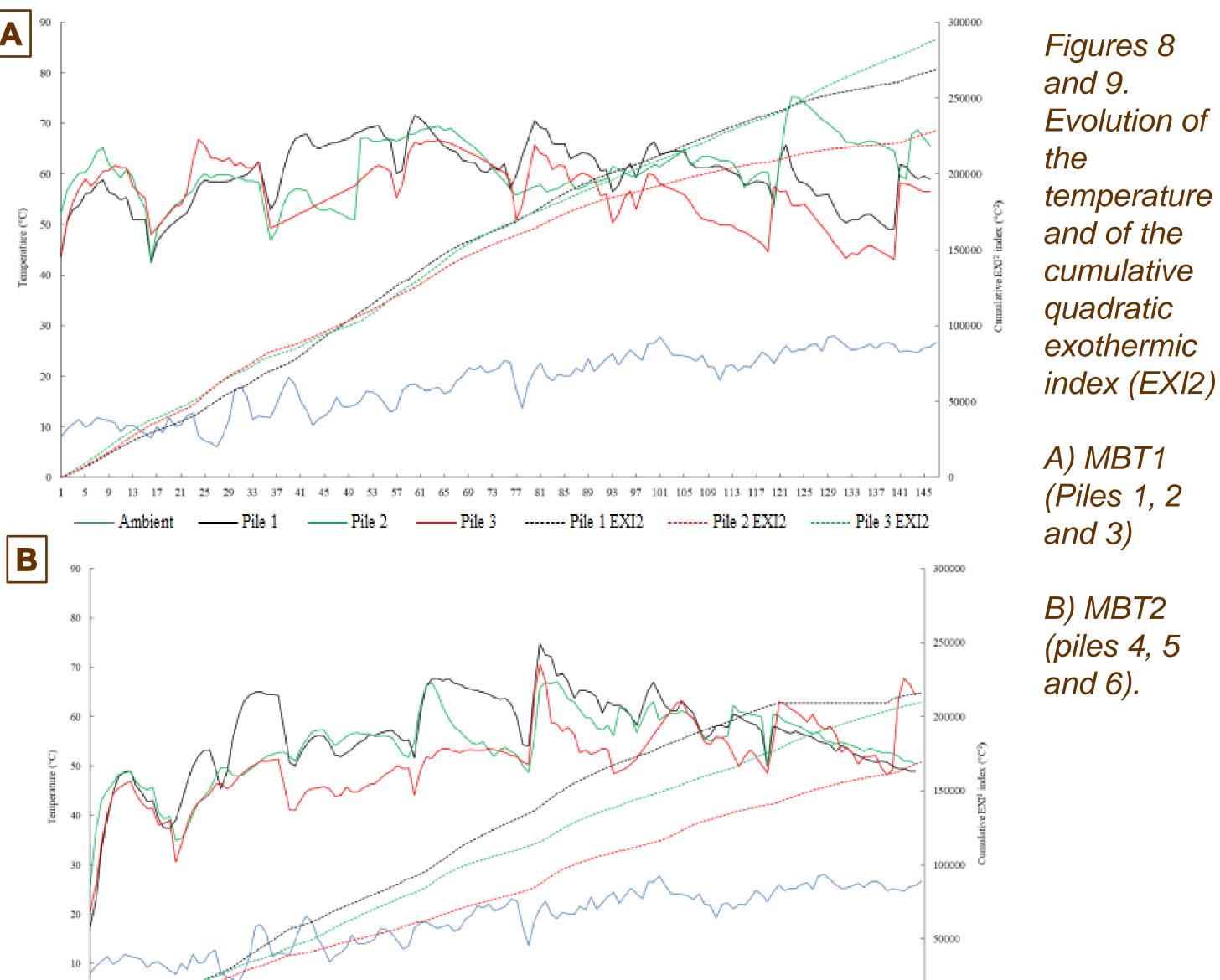
 Results & Discussion
 Fraction to obtain high value composts oriented to agricultural systems.

Six windrow composting piles (7,800 kg f.m) (Composition in figure 3)

Ingredients

Source of N

- olive mill waste (OMW) kept constant in all mixtures, 65% f.m.
 - olive leaves waste (OLW)
 - urban pruning residues (UPR)
 - OLW+UPR (1:1, w/w)

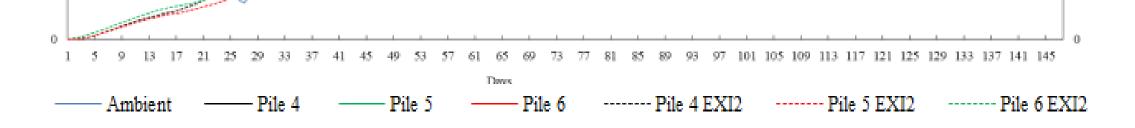

Biostabilized material of urban waste management plants from (15% constant in all mixtures)

- Valencia (MBT1)
- Castellón (MBT2)

150 days of bioxidative process + 30 days of maturation

Pile	MBT1	MBT2	OLW	UPR	OLW	OLW+UPR	
1	15%	-	65%	20%	-	-	Figure 6.
2	15%	-	65%	-	20%	-	Piles
3	15%	-	65%	-	-	20%	composition
4	-	15%	65%	20%	-	-	(% f.m)
5	-	15%	65%	-	20%	-	
6	-	15%	65%	-	-	20%	

	OMW	UPR	OLW	MBT1	MBT2
Moisture (%)	58.9	29.4	28.5	26.4	30.1



BD (g cm ³)	0.866	0.183	0.097	0.319	0.373
рН	6.7	7.5	6.1	6.9	7.6
EC (dS m ⁻¹)	3.05	2.71	1.34	6.50	5.07
TOC (%)	50.6	37.1	45.5	33.8	31.35
TN (%)	0.81	1.22	1.21	1.65	1.73
TOC/TN	62.51	30.31	37.67	20.46	18.12
PPH (mg kg ⁻¹)	5757	2492	6295	1458	2680

Figure 7. Physico-chemical properties of raw material.

Temperatures of MBT1 treatments rapidly increased and reached the thermophilic phase (>50 °C) on the first week of composting remaining above this level during 145, 147 and 129 days in piles 1, 2 and 3, respectively.

Conclusions

	Pile	T med(ºC)	Cumulative EXI ² index (C° ²)	EXI ² index Bioxidative days ⁻¹
	1	59.7 D	150.856 C	1006 C
MBT 1	2	60.7 D	153.361 C	1022 C
	3	55.9 C	138.761 C	925 C
MBT2	4	56.0 C	121.062 B	807 B
	5	54.0 B	105.899 B	706 B
	6	50.5 A	83.151 A	554 A
	F anova	31.37 ***	21.53 ***	21.53 ***

Different letters within the same column represent significant differences at p < 0.05. *** significant at p-value 0.001..

The results obtained during the composting process allow us to conclude that the presence of bioestabilized did not have a limiting effect on the process: all the piles reached high temperatures and composting was carried out satisfactorily. More tests should be carried out to define the difference in thermal parameters between the different bioestabilized piles.