

F.1.1. 1

EFFECT OF INORGANIC AND ORGANIC SOIL AMENDMENTS ON MAIZE BIOMASS PRODUC

Tomasz Głąb¹, Renata Jarosz^{3*}, Krzysztof Gondek², Monika Mierzwa–Hersztek^{2,3}

¹ Department of Machinery Exploitation, Ergonomics and Production Processes, University of Agriculture in Krakow, Poland

² Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Poland

³ Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland

**Corresponding author: renata.jarosz@agh.edu.pl*

Introduction

In recent decades agriculture systems have tried to increase productivity at the same level of fertilization or even with reduced fertilization. It is very promising to use soil amendments alone or in a mixture with fertilizer. Changes in temperature and precipitation distribution affect soil microbial processes and above and below-ground biomass. Soil amendments are promising due to their ability to reduce SOM decomposition and possible carbon sequestration. Connecting inorganic and organic soil amendment features with mineral fertilizers is promising in modern agronomy systems. We hypothesize that mineral composites and organic amendments in combination with mineral fertilization might affect the biomass productivity of maize.

The aim of research

This study aimed to determine the effect of different zeolite composites and mixtures with lignite or leonardite on the biomass production of maize. The objective of this study was to determine the effect of different mineral composites, organic amendments, and their doses on the biomass production of maize with the detailed characteristics of the root system.

Materials and Methods

A pot experiment was conducted at the experimental station of the Faculty of Agriculture and Economics of the University of Agriculture, located in Kraków-Mydlniki in the period 2020-2021. The average annual temperature during the study period was 7.7 °C. The pots were arranged according to a completely randomized design with four replications. Three experimental factors were considered: inorganic composite (zeolite/vermiculite, zeolite/carbon), organic amendment (lignite, leonardite), and rate (low, high). The experiments consisted of 40 pots with the following treatments (Table 2). The root samples were prepared for analysis using a hydro-pneumatic washing system (Smucker et al., 1982) to separate soil particles from the roots. Its morphometric parameters were calculated by methods described by Głab et al. (2020), i.e., root length density (RLD), mean root diameter (MRD, root surface area density (RSAD), specific root length (SRL), and root volume density (RVD). Statistical analyses were conducted with Statistica v. 13.0 statistical software package (StatSoft Inc., Tulsa, OK, USA).

Lable 2. Summary of tre	atment in experin	ientai aesign.		
Treatment	Fertilizer	Composite	Organic amendment	Rate
CTR	-	-	-	-
MF	mineral NPK	-	-	-
MF+ZV3%+Lig3%	mineral NPK	zeolite/vermiculite	lignite	low
MF+ZV9%+Lig6%	mineral NPK	zeolite/vermiculite	lignite	high
MF+ZV3%+Leo3%	mineral NPK	zeolite/vermiculite	<u>leonardite</u>	low
MF+ZV9%+Leo6%	mineral NPK	zeolite/vermiculite	<u>leonardite</u>	high
MF+ZC3%+Lig3%	mineral NPK	zeolite/carbon	lignite	low

Table 1. Basic soil physical and chemical properties.

Parameter	Unit	Value
pH(H ₂ O)		5.24 ± 0.02
pH (KCI)		5.03±0.01
Corg.	g kg ⁻¹	5.74±0.07
Ntotal	g kg ⁻¹	0.40 ± 0.01
C:N		14.35
P	g kg ⁻¹	0.176±0.03
K	g kg ⁻¹	0.389±0.04
Ca	g kg ⁻¹	0.35±80.02
Mg	g kg ⁻¹	0.250±0.02
s	g kg ⁻¹	0.118±0.01
Pb	mg kg ⁻¹	188 ± 15
Cd	mg kg ⁻¹	1.15 ± 0.08
Zn	mg kg ⁻¹	267 ± 18
Cr	mg kg ⁻¹	5.32 ± 0.73
Cu	mg kg ⁻¹	5.14 ± 1.33
Ni	mg kg ⁻¹	2.22 ± 0.18
EC	<u>μS</u> cm ⁻¹	273
Solid particle density	g cm ⁻³	2.65 ± 0.06
Sand	g kg ⁻¹	850
Silt	g kg ⁻¹	120
Clay	g kg ⁻¹	30

MF+ZC9%+Lig6%	mineral NPK	zeolite/carbon	lignite	high
MF+ZC3%+Leo3%	mineral NPK	zeolite/carbon	<u>leonardite</u>	low
MF+ZC9%+Leo6%	mineral NPK	zeolite/carbon	<u>leonardite</u>	high

The lowest biomass was produced at the CTR treatment (26.3 g) without fertilization and soil amendments, composites and organic amendments (Table 3). The highest aboveground biomass of maize straw was obtained at the MF treatment (138.8 g). Root dry matter was also affected by fertilisation and soil amendments, similarly to aboveground biomass (Table 4). The lowest RDMD was noticed at the CTR (0.23 mg cm⁻³), whereas the highest was at the MF treatment (1.49 mg cm⁻³). Linear regression models for the root:shoot ratios are presented in Figure 1. The most frequent root diameter fraction at every treatment was 0.1-0.2 mm (Figure 2). Zeolite/vermiculite and zeolite/carbon composites applied as inorganic soil amendment along with organic soil amendment affected the productivity of maize, both aboveground and root biomass.

Highlights

- Mineral-organic fertilizer mixtures have a positive effect on the yield of maize.
- A higher rate of organic treatments resulted in a higher maize root diameter.
- The correlation between aboveground and root biomass was statistically significant.

Table 3. Above-ground biomass productivity for soil amendments treatment (g per pot). *Treatments: control (C), mineral fertilization (MF), zeolite/vermiculite composite (ZV),* zeolite/carbon composite (ZC), lignite (Lig), and leonardite (Leo). Different letters indicate significant differences by the Bonferroni test (P<0.05) (superscripts used only for significant differences according to ANOVA). Asterisks indicate significant differences between controls (CTR and MF) and the mean values of other treatments.

Composite	Organic amendment	Rate	Straw (g)	Cob (g)	Straw and cob (g)	RSR		
CTR			26.3*	0.0	26.3*	0.163*		
MF			138.8*	39.8	168.7*	0.116*		
ZV	Leo	High	92.7	47.3	122.2	0.093		
		Low	105.2	57.6	134.0	0.112		
	Lig	High	111.3	33.8	136.7	0.103		
		Low	96.4	47.8	126.3	0.093		
ZC	Leo	High	96.2	48.5	120.5	0.105		
		Low	87.6	49.1	112.1	0.067		
	Lig	High	105.2	31.6	128.9	0.125		
		Low	100.4	42.5	127.0	0.112		
Means for Organic amendment and Rate interaction								
	Leo	High	94.4	47.9	121.3	0.099		
		Low	96.4	53.3	123.0	0.090		
	Lig	High	108 3	32.7	132.8	0.114		

Table 4. Root morphometric characteristics for soil amendments treatment. Treatments:
 control (C), mineral fertilization (MF), zeolite/vermiculite composite (ZV), zeolite/carbon composite (ZC), lignite (Lig), and leonardite (Leo). Different letters indicate significant differences by the Bonferroni test (P<0.05) (superscripts used only for significant differences according to ANOVA). Asterisks indicate significant differences between controls (CTR and MF) and the mean values of other treatments.

Results and Discussion

Composite	Organic amendment	Rate	RDMD (mg cm ⁻³)	RLD (cm cm ⁻³)	SRL (cm mg ⁻¹)	MRD (mm)	RSAD (cm ² cm ⁻³)	RVD (cm ³ cm ⁻³)
CTR			0.23*	0.77*	3.33	0.449	0.107*	0.00214*
MF			1.49*	5.38*	3.43	0.369	0.566*	0.01420*
ZV	Leo	High	0.66	1.75	3.12	0.395	0.219	0.00599
		Low	0.79	2.48	3.13	0.408	0.311	0.00901
	Lig	High	0.70	2.98	4.07	0.345	0.298	0.00749
		Low	0.57	1.83	3.21	0.418	0.235	0.00659
ZC	Leo	High	1.30	4.09	3.20	0.446	0.537	0.01583
		Low	0.23	0.61	2.95	0.347	0.069	0.00157
	Lig	High	0.64	2.55	4.29	0.351	0.276	0.00633
		Low	0.40	1.21	2.92	0.486	0.165	0.00420
Means for O	rganic amendr	nent and R	ate interactio	n				
	Leo	High	0.981	2.92	3.16	0.420 a	0.378	0.01091
		Low	0.512	1.54	3.04	0.377 <u>ab</u>	0.190	0.00529
	Lig	High	0.674	2.77	4.18	0.348 b	0.287	0.00691
		Low	0.484	1.52	3.07	0.452 a	0.200	0.00539
Means for Co	omposite and l	Rate intera	ction					
ZV		High	0.681	2.36	3.59	0.370	0.258 b	0.00674 b
		Low	0.679	2.15	3.17	0.413	0.273 b	0.00780 ъ
ZC		High	0.973	3.32	3.74	0.398	0.406 a	0.01108 a
		Low	0.317	0.91	2.93	0.416	0.117 c	0.00288 c
Means for C	omposite							
ZV			0.680	2.26	3.38	0.391	0.266	0.00727
ZC			0.645	2.11	3.34	0.407	0.262	0.00698
Means for Organic amendment								
	Leo		0.746	2.23	3.10	0.399	0.284	0.00810
	Lig		0.579	2.14	3.62	0.400	0.243	0.00615
Means for Rate								
		High	0.827	2.84 a	3.67	0.384	0.332	0.00891
		Low	0.498	1.53 b	3.05	0.415	0.195	0.00534

Figure 1. Relationship between root dry matter and aboveground biomass productivity of maize. The solid line is the fitted linear regression.

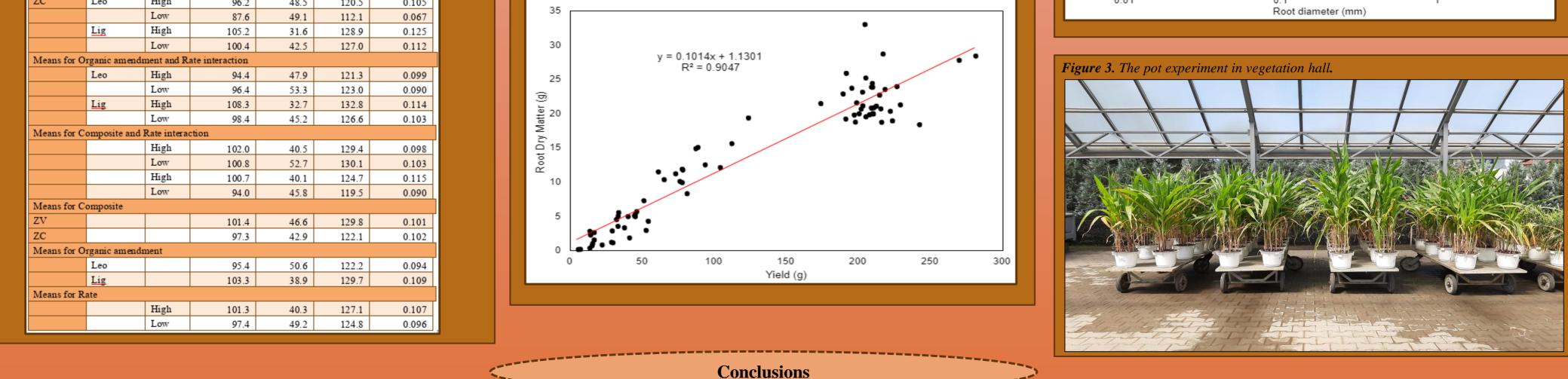
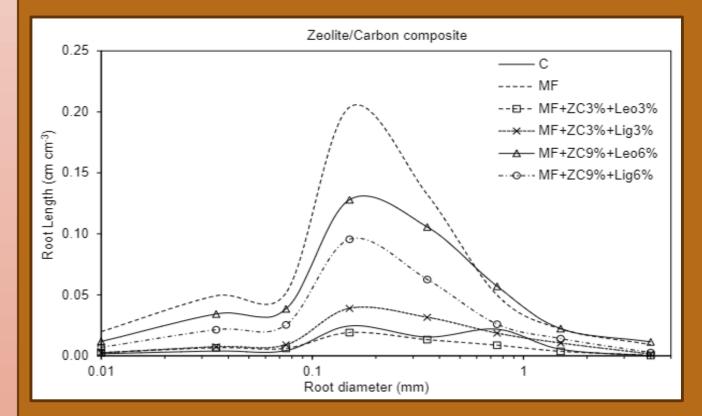
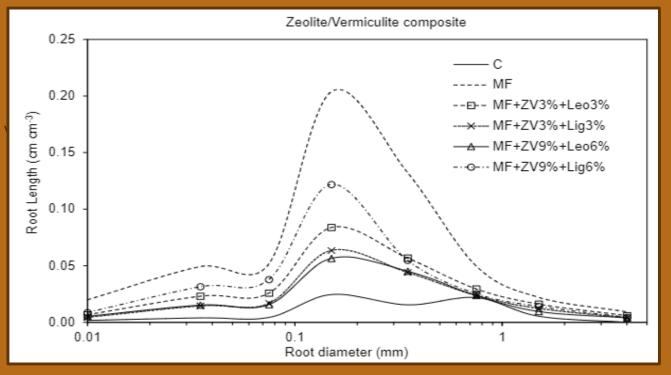
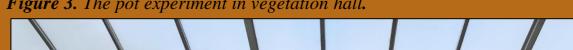





Figure 2. Root length density (RLD) distribution at the different root diameter values for treatments with different soil amendments. Treatments: control (C), mineral fertilization (MF), zeolite/vermiculite composite (ZV), zeolite/carbon composite (ZC), lignite (Lig), and leonardite (Leo).

1. Our investigation shows that zeolite composites with organic amendments affect maize biomass production, both aboveground and root systems.

2. The highest aboveground biomass of maize straw was obtained when mineral fertilization was applied.

3. Both aboveground and root biomass were at the same level, notwithstanding the soil amendments, zeolite composites, or organic amendments.

4. Zeolite/vermiculite composite application increased root surface area and root volume.

References

1. Smucker, A.J.M., McBurney, S.L., Srivastava, A.K., 1982. Quantitative separation of roots from compacted soil profiles by the hydropneumatic elutriation system. Agronomy Journal, 74, 500–503. 2. Głąb, T, Gondek, K, Mierzwa-Hersztek, M., 2020. Pyrolysis improves the effect of straw amendment on the productivity of perennial ryegrass (Lolium perenne L.). Agronomy, 10(10), 1455.

Acknowledgment

This study was supported by the project "Fly ashes as the precursors of functionalized materials for applications in environmental engineering, civil engineering and agriculture" – the project is carried out within the TEAM-NET program of the Foundation for Polish Science POIR.04.04.00-00-14E6/18-00.