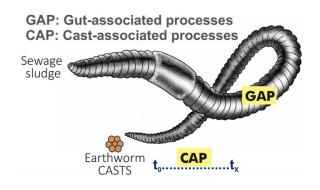


Earthworms and sewage sludge:

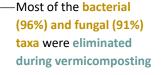
circular economy in integrated water management

Jorge Domínguez

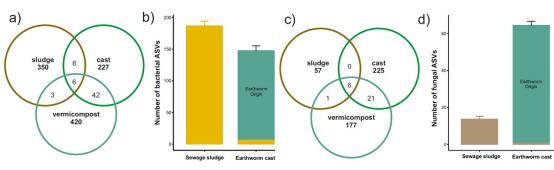
Universidade de Vigo, GEA (Grupo de Ecoloxía Animal), 36310 Vigo, Spain (jdguez@uvigo.es)


Vermicomposting promotes circular economy through the development of an integrated cycle that allows *in situ* conversion of the sewage sludge generated in WWTPs into safe and valuable soil amendments.

The amount of **sewage sludge** generated in wastewater treatment plants (WWTPs) keeps steadily increasing and *hundreds of million tons* are produced *every year all over the world*.


Their disposal causes serious environmental problems, particularly in terms of soil pollution by microbial human pathogens (MHPs), antibiotic resistant Genes (ARGs), microplastics, heavy metals, and organic pollutants.

Vermicomposting is an enhanced biooxidation process in which **epigeic earthworms** interacting with **microorganisms** accelerate the decomposition and stabilization of organic matter and substantially modify the physical, chemical, and biological properties of the organic wastes.


VERMICOMPOSTING

-Microbial communities in the vermicompost are completely different and more diverse than in sewage sludge

10 Carboxyl esterase Sewage sludge ARGs activity 8-MHPs umol h⁻¹ g⁻¹ grape Sewage Plastics 6. marc sludge /ermireactor 4 bioremediation system 2 b horse manure 0 VERMICOMPOST

Vermicomposting is a promising bioremediation system for eliminating pollutants from sewage sludge

s)

This study was supported by the Spanish Ministerio de Ciencia e Innovación (PID2021-124265OB-100), the Xunta de Galicia (ED431C 2022/07) and by the MCIN/AEI and EU_Next Generation under the project TED2021-129437B-100.

