Preparation of sustainable graphenes from coke-like wastes with applications in elimination of emergent contaminants in wastewater

M.González-Ingelmo¹, P. Álvarez¹, M. Granda¹, V. G. Rocha¹, Z. González¹, U. Sierra², A. Mercado², S.Fernandez², R. Menéndez¹ ¹Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado, Fe, 26,Oviedo, 33011, Spain

²Centro de Investigación de Química Aplicada (CIQA) Laboratorio Nacional de Materiales Grafénicos, Boulevard Enrique Reyna 140, San José de los Cerritos, C.P. 25294 Saltillo (Coahuila), México

Introduction

Graphene materials exhibit unique properties such as thermal stability, and have with potential application in different areas, as **elimination of Emerging contaminants (ECs) in water** (low levels of removal in conventional wastewater treatment processes, as diclofenac). Graphenes are usually produced from a natural graphite. It will be desirable to produce graphenes directly form residues, as a **carbonaceous waste** usually formed at the inner top section of the **coking oven for the steel industry**. This material must be scraped after several cycles of the oven usage and is outdoor stored causing contamination in surroundings. It is an objective of this work to develop a graphene preparation process which avoids the typical graphitization step (thermal treatment at 2500-3000°C) at which these coke-like material are usually subjected as a initial step (graphite formation). **The obtained graphenes will be exhaustively characterized and** the results compared with those obtained with a graphene prepared from commercial graphite under the same experimental conditions. Finally, **all GOs will be used to eliminate diclofenac in wastewaters**, in a concentration similar to that reported to be a problem to the Wastewater Treatment Plants

Oven Scrapping

Industrial wastes -Low termperature -High temperature

Coke, fed into a blast furnace

graphene

Objectives

- * To study the preparation of grahene materials using, as raw materials, industrial wastes obtained scratching conventional coking ovens for the steel industry
- * To optimize the processing and to determine the structural differences between the graphenes obtained from the different industrial wastes
- ***** To evaluate the capacity of the graphenes prepared to be used in the elimination of diclofenac (EC) in wastewater

Experimental Method

Industrial wastes -High temperature (GW) -Low termperature (CW)

Results & Discussion

Waste-based graphene characterization

ID/IG intensity ratio of 1 for CW and almost 0 for GW, this in accordance with the most graphitic structure of this later. ID/IG ratio of the GOs are both in the range 0.8-0.9 for GO-CW is even lower than that of raw sample CW.

GO-GW exhibit the appearance of a single layer of high size, similar to the standard GO-G. However, GO-CW is of much lower lateral size and mainly in the form of few layers

GO-G and GO-GW show the typical bimodal distribution of graphene oxides, with maxima at 284.5 eV (C-C bonds) and od 286.7 eV (C-O bonds). GO-CW shows much lower intensity in all the range above 286 eV, confirming the presence of a much less oxidized structure.

Waste-based graphenes in water purification

The prepared graphenes do not have the same capacity for adsorption of the contaminant (100 μ M).

The most effective for removing DFC is G-waste-GO. However, the results indicated that waste-H, despite not having undergone the graphitization step, is also better as an adsorbent than ref-GO. On the other hand, the study of two concentrations of GO in the adsorption experiments indicated that for all graphenes, a higher concentration is more effective in eliminating the contaminant.

	[GO] (ppm)	% DFC sorbed
G-waste-GO	80	92.0
	40	52.4
waste-GO	80	75.5
	40	26.6
ref-GO	80	63.6
	40	12.0

Conclusions

*Industrial coke-like wastes can be effectively used to prepare graphene materials. The utilization of a low temperature waste conditions affects the morphology of the graphene materials obtained from them.

*The coke-waste graphenes prepared can be used very effectively for the removal of DCF in water. This represents an important application for the revalorization of the residual material.

Acknowledgement

The authors thank the Spanish Ministry of Science and Innovation (MICINN) (project PID2019-104028RB-I00) and Spanish Council for Research (Icoop program, COOPB22006) for their financial support. Mrs. M-González-Ingelmo acknowledges his fellowship from the Asturias Regional Government (FICYT, Severo Ochoa Program BP20-168).

