

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Escola Politècnica Superior d'Enginyeria de Manresa

E INNOVACIÓN

MINISTERIO

Multivariate analysis of pharmaceutical pollutants adsorption in aqueous media with tailored waste-based carbonaceous adsorbent materials and commercial activated carbons

J. Lladó¹, F. López¹, J.M. Rossell¹, C. Lao-Luque¹, R.R. Gil², E. Fuente², <u>B. Ruiz²</u>

¹Department of Mining, Industrial and TIC Engineering (EMIT), Escola Politècnica Superior d'Enginyeria de Manresa, UPC, Manresa, Spain ²Biocarbon, Circularity and Sustainability Group (BC&S), Instituto de Ciencia y Tecnología del Carbono (INCAR), CSIC, Spain

Introduction

The purpose of this research is to determine the effectiveness of various biocollagenic waste-based activated carbons (BWAC) and a sludge biochar

Activation

Industrial

process

NaOH

Microwave

Microwave

(SBC) removing emerging pharmaceutical in comparison with commercial its and and

multiple lineal regression models to predict maximum adsorption capacities for future new waste based-activated carbons.

Model	r ²
Q _{phenol} = 0.059 +0.02496 C-1.101 H-0.0565 O+0.863 V _{SUPERM}	87.71%
Q _{salicylicl} = 0.087+ 0.0238·C -0.985·H -0.3215·S +0.0455·O + 2.55·V _{ULTRAM} + 1.51·V _{SUPERM}	86.67%
Qparacetamol = 1.920+ 0.0103·C-0.476·H-0.1155·S-0.0321·O-0.3081·N -0.1206·pH +3.065·VULTRAM	98.30%
Qdiclofenac = 0.998 – 0.00445·C-0.861·H+0.0243·O+ 1.76·Vsuperm+0.672·Vmeso	71.31%
Qiodixanol = -0.1962 +0.00164 Ash + 0.001922 SBET -5.83 VULTRAM -5.10 VSUPERM+0.01288 Humidity	75.12%

The adsorption of phenol, salycilic acid and paracetamol was on micropores. Diclofenac and IDXL adsorption was preferably physical in the wider micropores and narrower mesopores.

Multiple lineal regression models were proposed to predict maximum adsorption capacities of pharmaceutical. In the IDXL model the textural properties predominated, while in the paracetamol model the nitrogen content had a negative influence.

Acknowledgements

The authors thank Xerolutions collaboration, and Cabot-Norit, Kureha, and Eurocarb for supplying the adsorbents. The authors are too grateful to Miquel Farrés Rojas S.A., Igualada (Barcelona), for providing the leather wastes.