

Universidad de Jaén

Fibres as reinforcement of alkali-activated materials: Comparative study

M.A. Gómez-Casero^{1,2}, L. Pérez-Villarejo^{1,2}, E. Castro^{1,2}, D. Eliche-Quesada^{1,2}

¹ Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Jaén, University of Jaén, Spain
² Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Spain
Keywords: alkali activated cement, electric arc furnace slag, biomass bottom ash, fibres, reinforcement.

Presenting author email: magomez@ujaen.es; lperezvi@ujaen.es

Conclusions

- Natural fibres helped to develop better flexural strength than rest of fibres.
- Olive pruning fibres shown best values when they were treated before.
- A solution of 10 wt. % of Na₂SiO₃ was the best treatment. Mercerization and hornification also
 obtained great results.
- As a consequence of fibres added, compressive strength values decreased. This decrease was
 considered admissible, except with CaCl₂ solution and untreated fibres.
- Thermal conductivity increased, due to fibre adding. Mercerization and untreated fibres obtained nearest values to Control paste.
- The effect of olive pruning fibres as reinforcement have been demonstrated.

Acknowledgements

This work has been funded by the project Development and characterization of new geopolymeric composites based on waste from the olive industry. Towards a sustainable construction (MAT2017-88097-R), FEDER/Ministry of Science, Innovation and Universities, State Research Agency and the project PID2020-115161RB-I00: Applying the circular economy in the development of new low carbon footprint alkaline activated hydraulic binders for construction solutions (CongActiva), MCIN/AEI/ 10.13039/501100011033 FEDER "A way of making Europe". The authors thank Atlantic Copper S.A. for supplying slags. M.A. Gómez-Casero acknowledges support of MINECO (PRE2018-084073). Technical and human support provided by CICT of University of Jaén (UJA, MINECO, Junta de Andalucía, FEDER) is gratefully acknowledged.