

# A feasibility study on Bio-coal with Hydrothermal carbonization by Organic Waste as a Solid Fuel

Hye-Won Park\* and Jai-Young Lee<sup>1</sup>

\*,1 Department of Environmental Engineering, University of Seoul, Seoul 02504, South Korea (E-mail: hwonpark@uos.ac.kr; leejy@uos.ac.kr)

Introduction

### **Sewage and Paper sludge**

• The quantity of sludge is continuously increasing due to the construction and expansion of sewage facilities every year.

<Ash content> S-F 3:7 = 18.39%, P-S 3:7 = 23.05%<Volatile content> S-F 3:7 = 57.17%, P-S 3:7 = 57.34%<Fixed carbon content> S-F 3:7 = 27.44%, P-S 3:7 = 19.61%





• Difficult to remove its high moisture content, and its necessary to improve mechanical properties for recycling.

#### Food waste

- High moisture (>80%) and chlorine(Cl) content, so requires an energy-intense drying process to make it suitable for recycling.
- Hydrothermal Carbonization(HTC) technology is special due to its high adaptability to wet biomass like food waste. Based on these, Hydro-char, generally had improved calorific value, homogeneous properties during HTC.

### **Carbonization problems**

- Food waste : High calorific value, but contains a high concentration of chlorine

- Sewage sludge : Low calorific value and high ash content

# Research objectives

- Mixing food waste, sewage and paper sludge, to produce Bio-coal using Hydrothermal Carbonization(HTC).
- Comparative analysis of biocoal properties and evaluate the value as a solid fuel.



**Fig. 2.** Results of bio-coal (Sewage sludge and food waste)

**Fig. 3.** Results of bio-coal (Paper sludge and food waste)

## LHV (Lower Heating Value)

- Bio-coal produced from 100% of food waste exhibited the highest fixed carbon and Lower Heating Value (LHV). As the increased of F.W, the fixed carbon and carbon content of bio-coal increased, as resulting in increase of calorific value.
- S-F bio-coal, all mixing ratios satisfied the Solid Refuse Fuel (SRF) standard in South Korea.
- P-F bio-coal, derived the LHV of 3,000 kcal/kg when mixing ratios below 70% of food waste.





## Materials



S.S : Sewage sludgeF.W : Food WasteP.S : Paper sludgeS-F : Mixing Sewage sludge and Food waste

P-F: Mixing Paper sludge and Food waste

## **Experimental methods**

| Mixing ratio of food waste and<br>sewage or paper sludge |                  |               |                 |
|----------------------------------------------------------|------------------|---------------|-----------------|
| Sample<br>name                                           | Sewage<br>Sludge | Food<br>Waste | Paper<br>Sludge |
| <b>S.S 100</b>                                           | 100              | -             | -               |
| <b>F.W 100</b>                                           | -                | 100           | -               |
| <b>P.S 100</b>                                           | -                | -             | 100             |
| S-F 7:3                                                  | 70               | 30            | -               |
| <b>S-F 5:5</b>                                           | 50               | 50            | -               |
| S-F 3:7                                                  | 30               | 70            | -               |
| <b>P-F 7:3</b>                                           | -                | 30            | 70              |
| <b>P-F 5:5</b>                                           | -                | 50            | 50              |
| <b>P-F 3:7</b>                                           | -                | 70            | 30              |



**Fig. 4.** LHV results of bio-coal (Sewage sludge and food waste)

## TGA

**Fig. 5.** LHV results of bio-coal (Paper sludge and food waste)

- Fig.6., showed mixing ratio of F.W increased, the weight loss increased during 180-500°C.
  - ~180 °C : Weight reduction due to water content
  - 180~300 °C : Weight reduction due to volatile content
  - 300~500 °C : Weight reduction due to fixed carbon
- Food waste increased, ash content ↓, fixed carbon ↑ improve LHV, and combustion characteristic



Hydrothermal Carbonization(HTC) is a pyrolysis technology to produce hydrochar, under low temperature. Able to use without dehydration and drying process.
The reaction conditions in this study were selected as 220°C for 2 hours, specified in Table 2.



## Results

### **Proximately analysis**

- As the proportion of food waste increased, the ash content decreased, also derived the volatile matter and fixed carbon content increased.
- The ash content significantly decreased when the ratio of food waste increased.

| Fig. 6. Results of bio-coal (Sewage sludge and | Fig. 7. Resul |
|------------------------------------------------|---------------|
| food waste)                                    | food waste)   |

Fig. 7. Results of bio-coal (Paper sludge and odd waste)

## Conclusion

- Mixing food waste with sewage sludge showed an increase in LHV by increasing the fixed carbon, which in turn reduced fuel ratio costs.
- In this study, it was confirmed that using <u>paper sludge</u> as a solid fuel is <u>not</u> <u>feasible</u> due to its very low heating value(LHV) and high fuel ratio. However, the sewage sludge, *LHV increased due to an increase in fixed carbon*, and the fuel ratio was derived the low-grade coal.
- As the results, the sewage sludge can be alternative material as a solid fuel.
   So, it was confirmed that Bio-coal can be as an alternative fuel.

## Reference

- Jin, F., 2014, Application of Hydrothermal Reactions to Biomass Conversion, Green Chemistry and Sustainable Technology.
- Joseph, S., 2010, Sustainable Bio-char to Mitigate Global Climate Change, Nature Communication, 1(5), pp.1-9.
- Biller Patrick., 2013, Hydrothermal processing of microalgae, University of Leeds
- Federal Remediation Technologies Roundtable, Schematic of Technology Screening Matrix
- Environment-friendly Rainwater Management LID Technique, Water-permeable Package(Porous Pavement), 2019

This work was supported by the Korea Ministry of Environment as Waste to Energy-Recycling Human Resource Development Project.(YL-WE-22-001)