Post-combustion CO₂ capture from flue gases emitted by fossil fuel-fired power plants

P. Gkotsis, E. Peleka, A. Zouboulis

Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece Keywords: CO₂ capture, hybrid energy storage, circular economy, renewable energy, membrane separation Presenting author email: <u>peleka@chem.auth.gr</u>

The present study is part of a circular economy programme (LIFE " CO_2toCH_4 "), which aims to develop and demonstrate an innovative, integrated and sustainable industrial process for the simultaneous energy storage and CO_2 Capture and Utilization (CCU). The principal idea of LIFE CO_2toCH_4 involves the construction, operation and demonstration of an autonomous mobile unit for hybrid energy storage, which uses the exhaust gases from a thermo-electric power plant (burning lignite), as well as hydrogen (H₂) produced from water electrolysis (by using renewable energy sources) and subsequently, converts them into (bio)methane (CH₄), i.e., into an alternative energy source.

The mobile unit consists of three fundamental sub-units: (i) the electrolyzer (for the production of H_2), (ii) the exhaust waste gases cleaning/purification system, and (iii) the bio-methanation unit. Before the main implementation actions, which include the operation, optimization and demonstration of the prototype mobile unit, a detailed technical preparation design of the integrated process elements (i.e., electrolyzer, cleaning system, bio-methane reactor) was conducted. The present work describes the general operation of the prototype system and primarily focuses on the separation of CO₂ with a two-stage polyimide membrane system, providing also an overview of the most significant post-combustion CO_2 capture processes.

Table 1. Composition of flue gases from the thermo-electric power plant.

Substance	Mean value
SO ₂	208 mg/Nm ³
NO _x	231.9 mg/Nm ³
CO	72.6 mg/Nm^3
Dust	22.5 mg/Nm ³
CO_2	11.3 %
O_2	7.8 %
H_2O	20.8 %

Acknowledgements

The "Demonstration of a mobile unit for hybrid energy storage based on CO_2 capture and renewable energy sources (LIFE CO_2 toCH₄)" project has received funding from the LIFE Programme of the European Union.

